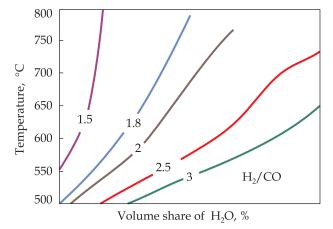

STRUCTURED CATALYSTS FOR C_1 - C_4 ALKANES COMBINED REFORMING INTO SYNGAS

Scheme of catalytic reformer with turbine

Areas of Application

The catalyst is to be used for obtaining syngas by combined O_2 - CO_2 - H_2O reforming of natural gas (methane and its homologues) for the further synthesis of ammonia, methanol, diethyl ether, and for Fischer-Tropsch synthesis


Specification

This cellular structured catalyst with a low content of active ingredients and a low gasdynamic resistance enables performing combined oxidative reforming of C_1 - C_4 alkanes involving O_2 , H_2O , and CO_2 ; obtaining syngas with H_2/CO ratio adjustable from 1 to 3; and implementing the autothermal mode

Advantages

As compared with similar catalysts, this one is cheaper, has a lower content of active components and a high productivity; it is resistible to carbonization and action of sulfur-containing compounds, has a low gas-dynamic resistance and operates within a wide temperature range (500 - 1000 °C); the catalyst does not contain precious metals

Syngas composition diagram

Stage of Development. Suggestions for Commercialization

IRL6, TRL5

Upon request, prototype is manufactured; license agreement for commercial production is made

IPR Protection

IPR3

Contact Information

Serhii O. Solovyov, L.V. Pisarzhevskii Institute of Physical Chemistry of the NAS of Ukraine; +38 044 525 66 70, e-mail: soloviev@inphvschem-nas. kiev.ua