
METHOD FOR MANUFACTURING HIGH-TEMPERATURE PROTON CONDUCTIVE MATERIALS

Proton conductive material deposited on ceramic hollow tube (*a*, *b*) and flexible pad (*c*)

Stage of Development. Suggestions for Commercialization

IRL3, TRL4

Trial batch of proton conductive materials for testing at customer workspace; ready for the elaboration of business plan

Areas of Application

The proton conductive materials for high-temperature fuel cells and membrane catalytic contacts used in the synthetic fuel processes: synthesis gas conversion, olefins hydration, alcohols dehydration, and alkyl aromatics hydrocracking

Specification

The materials are products of acetylene dehydropolycondensation, carbamide homopolycondensation, and polyvinylchloride dehydrochlorination. They have the properties as shown in Table below

	Product		
Parameter	acetylene dehydro-	carbamide homopoly-	polyvinyl- chloride
	polyconden-	conden-	dehydro
	sation	sation	chlorination
Proton conductivity, S/cm,			
at 450–460 °C	10^{-4}	$4 \cdot 10^{-5}$	$5 \cdot 10^{-5}$
Thermo- stability, °C	600	550	500

Advantages

The injected proton conductivity of developed materials ranges within $10^{-5} - 10^{-4}$ S/cm at a temperature of 200 - 460 °C

IPR Protection

IPR3

Contact Information

Valerii A. Bortyshevskyi, Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine; +38 044 559 04 95, e-mail: bort2001@gmail.com