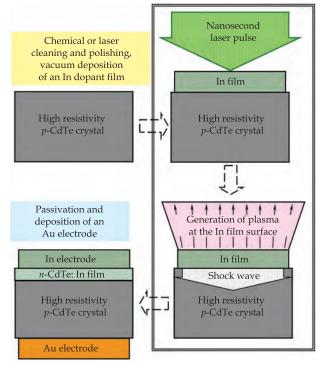

CdTe-BASED M-*p-n* SENSOR DIODE STRUCTURES WITH HIGH RESOLUTION

Areas of Application

The In/CdTe/Au M-*p*-*n* sensor structures with a high energy resolution are to be used in X/ γ -ray radiation detectors for localization and identification of radioactive sources and for visualization of objects in nuclear energetics, ecology, industry, medicine, etc.


Specification

Thicknesses of <i>p</i> -CdTe crysta <i>n</i> -CdTe:In doped layer, nm and In and Au electrodes in In/CdTe/Au M- <i>p</i> - <i>n</i> structur	40 300 - 500
Electrons concentration, cm ³ Mobility in <i>n</i> -CdTe:In layer,	~10 ¹⁹ cm ² /V·s ~140
Resistivity of <i>p</i> -CdTe crystal, and <i>n</i> -CdTe: In layer, Ω · cm	Ω·cm, 10 ⁹ 10 ⁻³
Source current density, nA/o	cm ² <10 (at 200 V)
Energy resolution, % (T = 300 K)	0.7-1.0 (FMHW at 662 keV)

Samples of In/CdTe/Au M-p-n sensor diode structures

Contact Information

Procedures and mechanisms of M-*p*-*n* diode structures formation using laser-induced doping

Advantages

There are no analogs in Ukraine. The In/CdTe/Au M-p-n diode structures with a low source current have a high energy resolution of 0.7-1.0% (FMHW at 662 keV), versus 2-5% of the foreign commercial analogs

Stage of Development. Suggestions for Commercialization

IRL4, TRL5 Manufactured upon request

IPR Protection

IPR2, IPR3

Anna S. Stanetska, V.Ye. Lashkaryov Institute of Semiconductor Physics of the NAS of Ukraine; +38 044 525 60 43, +38 099 292 66 60, e-mail: stanetska_anna@ukr.net