NUCLEAR SCANNING MICROPROBE

Areas of Application

The nuclear scanning microprobe is a highprecision microanalyzer for elemental analysis of materials ranging from hydrogen to uranium with a detection threshold of 1...100 ppm (depending on element and technique). The use of scanning mode enables to map element distribution in the near-surface layers at a depth of 10–20 μ m with a resolution of 2 μ m. The analytical technique for element analysis is qualitative and absolute, does not require any reference samples

Specification

Spatial resolution in microanalytical	
mode, μm	0.6 - 2
Sort of beam ions	H ⁺ , He ⁺
Beam energy, MeV	0.2 - 1.7
Scanning raster, µm	500
Analytical techniques applied:	
characteristic X-ray radiation,	
detection threshold, ppm:	1 - 10
Rutherford backscattering	
detection threshold, ppm	100
depth resolution, nm	10
-	

Advantages

The nuclear scanning microprobe employs the distributed probe-forming system based on precision magnet quadrupole lenses using a distributed "Russian quadruplet" where the lenses are coupled in integrated doublets made of single piece of soft magnetic material. These doublets are unique and have no counterparts in the world; the probe has a higher resolution as compared with commercial samples

Stage of Development. Suggestions for Commercialization

IRL6, TRL4 Sample manufacture, adjustment, and maintenance, upon request

IPR Protection

IPR3

Contact Information

Oleksii I. Voroshilo, Institute of Applied Physics of the NAS of Ukraine; +38 0542 22 46 08, +38 0542 22 27 94, e-mail: voroshilo@ipfcentr.sumy.ua