
## **OPTICALLY-TRANSPARENT PROTECTIVE COATINGS**



Photoelectric converters for solar panels

### Stage of Development. Suggestions for Commercialization

IRL3, TRL3 Manufactured and supplied, upon request

#### **Areas of Application**

For photovoltaic and optoelectronic devices

#### **Specification**

| The coating:                            |          |
|-----------------------------------------|----------|
| optical transparency, %                 | ≥92-95   |
| adhesion to inorganic                   |          |
| and organic surfaces, MPa               | ≥45      |
| operating temperature                   |          |
| range, °C:                              | -190+200 |
| ultimate breaking shear                 |          |
| stress, MPa                             | 27.5     |
| thermal-cycling stability               |          |
| (from –100 to +80 $^{\circ}$ C), cycles | 1000     |
| The photoelectric transducer            |          |
| with the coating:                       |          |
| short-circuit current, A                | 1.09     |
| open-circuit voltage, V                 | 12.0     |
| efficiency, %                           | 16.4     |
| -                                       |          |

#### **Advantages**

In comparison with domestic and foreign analogs, the proposed optically-transparent coatings have a higher adhesion to surfaces with various surface energy, a wider operating temperature range, a higher resistance to ultraviolet and radioactive radiation, with the optical properties kept, and a higher mechanical strength. The application of such coatings enables rising the efficiency of solar energy photoelectric converter, reducing its prime cost, and extending its service life more than 2 times

# IPR Protection

#### **Contact Information**

*Oleksandr O. Brovko*, Institute of Macromolecular Chemistry of the NAS of Ukraine; +38 044 559 42 95, e-mail: brovko@ihvs.nas.gov.ua