ADVANCED R&D AND TECHNOLOGIES

0

ENVIRONMENT AND NATURE PROTECTION

SPECIAL ISSUES

ENVIRONMENT AND NATURE PROTECTION

HNOLOGIES

FOOD INDUSTRY

FUEL, LUBRICANTS, AND TECHNOLOGIES

INDUSTRIAL AGRICULTURE AND LANDSCAPE GARDENING

INFORMATION AND SENSOR SYSTEMS AND DEVICES

INFORMATION TECHNOLOGY

MACHINE-BUILDING AND INSTRUMENT ENGINEERING

MEDICAL PRODUCTS AND MEDICAL DEVICE ENGINEERING

POWER ENGINEERING AND ENERGY EFFICIENCY

TECHNOLOGIES AND EQUIPMENT FOR EXPLORING, ESTIMATING, AND EXTRACTING MINERAL RESOURCES

TECHNOLOGIES FOR CONSTRUCTION AND FUNCTIONAL MATERIALS

BIOSENSORS FOR DETECTION OF ALKALOIDS AND OTHER NATURAL TOXINS

Appearance of biosensor system

Advantages

There are no commercial counterparts. The proposed system does not require presampling; is notable for a short time of analysis (rapid analysis), low labor intensity and cost of analysis, a high sensitivity and selectivity of determination; can be used for real-time field measurements

Areas of Application

The system is designed for detection of alkaloids and other natural toxins in agriculture and for monitoring of toxic substances

Specification

Bioselective element	Butyryl cholineste- rase	Acetyl cholineste- rase
Analyte	Glyco- alkaloids	Aflatoxins
Detection limit., µg/ml	0.2	0.1
Linear range of detec- tion, µg/ml	0.4-100	0.2-40
Operational stability, hours	12	12
Storage stability, months	2	2
Time of analysis, min	20	20
Measurement error,%	≤10	≤10

Stage of Development. Suggestions for Commercialization

IRL6, TRL5

The system is manufactured upon request. Seeking partners for commercial production

IPR Protection

IPR3

Contact Information

Valentyna M. Arkhypova, Institute of Molecular Biology and Genetics of the NAS of Ukraine; +38 044 200 03 28, e-mail: avalka@yahoo.com

BOTTOM WATERS DEGASSING BATHOMETER

Areas of Application

The device is used for sampling bottom water in the seas, rivers, and closed water reservoirs, as well as for sealing and degassing in order to study water-soluble gases and to carry out environmental studies

Specification

Sampling at a depth, m	≤2000
Volume of water sample, l	≤10
Volume of degassed sample, cm ³	5 - 250
Material	Stainless steel
Weight without samples, kg	64
External dimensions m	1.36×0.4
LACINAL AIRCHSIONS, III	1.50 ~ 0.4

Advantages

Improved reliability of bottom water and dissolved gases samples and possibility of sampling in deep waters; improved reliability of sealing valves

Stage of Development. Suggestions for Commercialization

IRL5, TRL6

Upon request, the device is manufactured, supplied, and maintained during the warranty period; staff training is provided

IPR Protection IPR3

Contact Information

Ruslan B. Havryliuk, Institute of Geological Sciences of the NAS of Ukraine; +38 044 239 74 16; e-mail: gavrilyuk.ruslan@gmail.com

CATALYST FOR PURIFICATION OF INTERNAL COMBUSTION ENGINE EMISSIONS FROM CO, NITROGEN OXIDES, AND ORGANIC COMPOUNDS

Areas of Application

The catalyst is to be used for purification of exhaust gases produced by steam generators and vehicles from CO, NO_x, and organic compounds

Specification

Honeycomb-structured blocks of given shape with longitudinal channels to ensure a low gas-dynamic resistance. Purification from: CO - 95-98% (95% conversion

is achieved at 170 °C); NO_x - 98-99% (98% conversion is achieved at 220 °C); Organic compounds - 90-98% (90% conversion is achieved at 300 °C) Operating temperature range - 150-600 °C

Pd/Co-Ce/cordierite catalytic block

Advantages

The catalyst-based technology enables reducing 2-3 times the content of platinum metals as compared with counterparts without compromising the effectiveness. The catalysts are characterized by a low temperature of high conversion of toxic components (170-300 °C) and a high resistance to sulfur compounds

Stage of Development. Suggestions for Commercialization

IRL3, TRL4 Batches of catalyst are manufactured upon request

IPR Protection

Contact Information

Serhii O. Soloviev, L.V. Pisarzhevskii Institute of Physical Chemistry of the NAS of Ukraine; +38 044 525 66 70; e-mail: soloviev@inphyschem-nas.kiev.ua

CATALYST FOR REMOVING CARBON MONOXIDE FROM HYDROGEN-RICH GAS MIXTURE

Areas of Application

Catalyst for fine purification of hydrogen-rich gas mixtures from CO can be used as fuel for environment friendly transport, in metallurgy, chemical, food, pharmaceutical industries, space, and defense industries

Specification

The catalyst provides fine purification from CO (up to 50 ppm) of hydrogen-rich mixtures obtained from any organic crude. CO is removed by its selective oxidation on the catalyst surface at a temperature of 100-140 °C and an atmospheric pressure

Advantages

As compared with counterparts, the catalyst does not contain precious metals; it is cheaper and has a higher thermal and mechanical stability

Stage of Development. Suggestions for Commercialization

IRL5, TRL4 Batches of catalyst are manufactured upon request

IPR Protection

IPR3

Contact Information

Petro Ye. Strizhak, L.V. Pisarzhevskii Institute of Physical Chemistry of the NAS of Ukraine; +38 044 525 66 63; e-mail: pstrizhak@hotmail.com

CATALYST FOR SELECTIVE REDUCTION **OF NITROGEN OXIDES IN OXYGEN-RICH EXHAUST GASES**

Areas of Application

The catalyst is to be used for neutralization of nitrogen oxides in exhaust gases emitted by lean-burn engines, diesel generators, etc.

Specification

Ceramic honeycomb-structured block matrix made of synthetic cordierite; purification from nitrogen oxides is $\geq 95\%$ at 250–400 °C; reducing agents are oxygenates, hydrocarbons; silver content is 0.5 ± 0.02 wt.%

Ag/Al₂O₂/cordierite block catalyst

Advantages

As compared with counterparts, the block catalyst has more accessible active components, a higher performance, a lower gas-dynamic resistance, and a reduced content of precious metals

Upon request, batches of block catalyst and recommendations on the use are provided

Application: purification of exhaust gases of diesel generators

IPR Protection IPR2

IRL3, TRL4

Contact Information

Stage of Development.

Serhii O. Soloviev, L.V. Pisarzhevskii Institute of Physical Chemistry of the NAS of Ukraine; +38 044 525 66 70; e-mail: soloviev@inphyschem-nas.kiev.ua

CATALYSTS FOR DEEP OXIDATION OF HYDROCARBONS

Catalyst appearance

Catalytic heat generators (CHG), combustion chamber of gas turbine

Areas of Application

This catalyst is to be used in chemical, petrochemical, and metallurgical industries in systems for catalytic purification of exhaust gases from hydrocarbon impurities and for combustion of gaseous hydrocarbon fuels in industrial and household catalytic heat generators

Specification

Fireproof ceramic honeycomb-structured blocks (cordierite, kaolin-aerosil) coated with catalyst; the content of active ingredient (manganese or cobalt oxides) is 3-7 wt.%; stable activity (100% CH₄ conversion is achieved at a temperatures of 650-750 °C) in deep oxidation reaction of methane during repeated cycles of in laboratory conditions; thermal stability of up to 900 °C

Advantages

In comparison with known counterparts this catalyst has a better adhesion of second carrier (Al_2O_3, ZrO_2) to the block material, a cheaper cost due to the absence of precious metals, a lower consumption of active ingredient due to its even distribution on the surface of secondary carrier, and a higher mechanical strength (up to 50 MPa) and fire resistance

Stage of Development. Suggestions for Commercialization

IRL3, TRL4 The product and recommendations on its use are provided upon request

IPR Protection IPR1, IPR3

Contact Information

Serhii O. Soloviev, L.V. Pisarzhevskii Institute of Physical Chemistry of the NAS of Ukraine; +38 044 525 66 70; e-mail: soloviev@inphyschem-nas.kiev.ua

CLOSED-CIRCUIT WATER TREATMENT PLANT

Closed-circuit mine water treatment plant with a capacity of 150 m³/h: 1 – storage tanks; 2 – water pretreatment facilities; 3 - reverse osmosis plant; 4 - evaporation on film evaporators; 5 - evaporation-crystallization plant

Advantages

The main impurities are removed from water in the form of products suitable for further use; significant reduction in energy consumption (up to 40%); extension of membrane service life up to 5-10 years (instead of 2 years on average); use of organic additives for fuel production

Purified water

Areas of Application

The plant is designed for wastewater treatment in order to get the quality suitable for its use for drinking and for various technical purposes

Specification

The technical specifications depend on required plant capacity, chemical composition of effluents, and requirements for purified water quality. In particular, the possible options are as follows: mine water treatment; water treatment for power engineering; purification of electroplating wastes; treatment of hydraulic fracturing wastewater; treatment of spent-soap lye; and recycling of used chromate muds and solutions

Stage of Development. **Suggestions for Commercialization**

IRL5, TRL6 Upon request, the technology and plant are developed, warranty and post-warranty service is provided

IPR Protection IPR1, IPR3

Contact Information

Halyna O. Deparma, A. Podgorny Institute of Mechanical Engineering Problems of the NAS of Ukraine; +38 057 349 47 64, +38 067 957 06 94; e-mail: ozis@ipmach.kharkov.ua

COMBINED TECHNOLOGY FOR ELECTROPHYSICAL DECONTAMINATION OF INFECTED EFFLUENTS

Areas of Application

This is an energy-saving combined technology for decontamination of infected effluents of whatever origin (for instance, liquid waste of tuberculosis and pathogenic diseases departments of hospitals) through combining the bactericide action of electrical discharge and electronic irradiation. The technology can apply locally for disinfection at medical establishments

Advantages

The technology has no counterparts. It differs from the existing techniques with a combined use of bactericide properties of various electrophysical methods. This enables to reduce costs of engineering framework for its implementation and to create a compact disinfection facility having dimensions of about $4 \times 4 \times 3$ m, which can be used by small medical establishments and municipal operators of sewerage systems

Specification

The technology is based on original two-stage method for decontamination of infected fluids using special forms of electric discharge products and 400-500 keV electronic beams

Stage of Development. Suggestions for Commercialization

IRL3, TRL3 Technology is provided

IPR Protection

Contact Information

Tetiana V. Kovalinska, Institute of Nuclear Research of the NAS of Ukraine; +380 044 525 45 75, e-mail: tkovalinska@kinr.kiev.ua

COMPACT UV POLARIMETER FOR STUDYING AEROSOL COMPONENTS OF THE EARTH'S STRATOSPHERIC OZONE LAYER

Areas of Application

The UV polarimeter enables to obtain from outer space some physical characteristics which can be used in meteorology, climate studies, and ecological innovations

Specification

Spectral range, nm	240 - 290
Sensitivity, A/W	10×10^{-3}
Accuracy,%	0.1
Power consumption, W	20
Volume, l	0.3
Weight, kg	0.5

Advantages

The space studies of the Earth's ozone layer with the use of UV polarimeter installed on the board of artificial Earth satellite are unique in the world practice. The information obtained from them enables to clarify the mechanisms of changes in the Earth's ozone layer and those of the formation of ozone holes in order to develop and to make more efficient international efforts for preventing this disastrous phenomenon

Stage of Development. Suggestions for Commercialization

IRL5, TRL5

A working model of compact UV polarimeter that can be used as a framework for creating artificial satellite-borne polarimeters to study the aerosol component of the Earth's stratospheric ozone layer

IPR Protection

IPR1, IPR3

Contact Information

Petro V. Nevodovskyi, The Main Astronomical Observatory of the NAS of Ukraine; +38 044 526 47 61, e-mail: nevod@mao.kiev.ua

CONTROL AND MINIMIZATION OF RISKS OF PROPAGATING HUMAN WATER- AND AQUATIC ORGANISM-BORNE PARASITIC DISEASES

Trematode metacercaria in fish muscles

Areas of Application

Reduction of the risk of human parasitic diseases, environment protection, and sustainable development

Specification

The key objects for monitoring (certain groups of aquatic organisms, water samples from specific habitats, etc.) and complex methodological approaches provide a basis for a system of measures to reduce the risk of human water- and aquatic-organism borne parasitic diseases

Advantages

The advantages of proposed methodology in comparison with other control procedures is an combination of hydrobiological, parasitological, and sanitary-epidemiological approaches into a comprehensive methodology that enables to take into account the key abiotic and biotic regulatory factors

Stage of Development. Suggestions for Commercialization

IRL3, TRL2 The research based on the proposed method is carried out upon request

IPR Protection IPR1, IPR3

Contact Information

Oleksandr Ye. Usov, Institute of Hydrobiology of the NAS of Ukraine; +38 044 419 39 81, e-mail: post_mail@hydrobio.kiev.ua

DRILLING TOOL FOR HOLE SAMPLING IN SANDY SOILS

Areas of Application

The device is used for drilling small holes in dry sandy soils; measuring temperature, thoron and radon content; sampling gases from holes; and for carrying out environment studies

Specification

The tool is used to obtain 1 m or deeper blast holes (depending on engine power).

Weight without engine, kg2.2External dimensions, m 1.14×0.04

Stage of Development. Suggestions for Commercialization

IRL7, TRL6 Upon request, the device is manufactured, supplied, and maintained during the warranty period; staff training is provided

Advantages

The tool enables prevention of dry soil collapse and free movement of measuring device into the blast hole; improves productivity of geological works

IPR Protection

Contact Information

Ruslan B. Havryliuk, Institute of Geological Sciences of the NAS of Ukraine; +38 044 239 74 16, e-mail: gavrilyuk.ruslan@gmail.com

Environment and Nature Protection

EQUIPMENT FOR TIRES RECYCLING USING THE OZONE TECHNOLOGY

Ozone technology for tires recycling

Stream OzoneTM industrial ozone generators

Areas of Application

The equipment is designed for disposal of waste tires and production of rubber crumb used for manufacturing reclaimed rubber, minor rubber goods (carpets, rugs, etc.), asphalt, European-type roofing felt, and composite materials

Advantages

The equipment has the following advantages over the conventional equipment for mechanical tire recycling: 2-3 times less power consumption; a decrease in the number of recycling stages; a low amortization of working parts of the equipment; a high quality of rubber crumb having a more developed surface and a high purity

Specification

The laboratory prototype has the following characteristics: capacity of up to 50 tires per day; rubber destruction of 85–90%; fine (less than 1 mm) crumb output of 15% of total crumb weight; and power consumption of 250 kW per ton of tires

Stage of Development. Suggestions for Commercialization

IRL5, TRL4

Seeking investors and partners for upgrade of technology, transition from laboratory prototype to industrial one, and production of industrial equipment

IPR Protection

IPR1

Contact Information

Serhii Pugach, National Science Center "Kharkov Institute of Physics and Technology"; +38 057 335 68 43, +38 057 349 10 49, e-mail: pugach@kipt.kharkov.ua

FISH-PASSING FACILITY FOR RIVER SECTIONS SHALLOWED AS A RESULT OF DRAWING-OFF HPS OPERATION

Areas of Application

The facility is to be used for enabling fish passage to spawning sites in the case of river shallowing as a result of operation of small drawing-off hydropower station and the appearance of obstacles to fish migration, like rapids and small waterfalls

Specification

The fish ladder is a wooden tray narrowing downward, with transverse partitions located alternately on each side. The ladders are installed in the places critical for fish passage (rapids or drops) with a maximal height of fish elevation of up to 2 m

Advantages

IRL3, TRL4

The fish ladder can be installed in almost any place of river without disrupting the natural stream bed; it is cheap, reusable, environment friendly, does not require any heavy equipment for installation

Suggestions for Commercialization

Patent sale; consultation services regarding the installation of fish ladders and control

River shallowed as a result of drawing off

Spawning run of trout

Contact Information

IPR Protection

IPR3

Stage of Development.

of their effectiveness are provided

Oleksandr Ye. Usov, Institute of Hydrobiology of the NAS of Ukraine; +38 044 254 11 41, e-mail: post_mail@hydrobio.kiev.ua

Environment and Nature Protection

FORECASTING OF LANDSLIDES USING MULTISPECTRAL SATELLITE IMAGES

Fragment of the resulting maps of Central Dnieper landslide zone, Kyiv city

Areas of Application

The method is to be used for identifying and forecasting landslide-prone areas to prevent activation of landslides within urban areas and areas exposed to anthropogenic load, which leads to significant environmental problems and financial losses

Specification

The forecast results are the Geographic Information System (GIS) for landslide-prone areas and some areas of possible landslide activation using multispectral satellite data, analysis of morphodynamic surface by means of the digital elevation model, and analysis of changes in anthropogenic load in the monitoring mode

Advantages

Advantages of the multispectral satellite images over the similar ground observation data are better visibility, efficiency and a relatively low cost of this method, as well as creation of GIS for the landslide areas

IPR Protection

IPR2

Fragment of satellite image of the Zamkova Hora with high landslide risk areas selected

Morphodynamic analysis of Central Dnieper landslide zone, Kyiv city: 1 — landslide and its number: 2 — drainage grid; 3 — ridge lines; 4 — upper slope brow; 5 — lower slope brow; 6 — slope bend; 7 — landslide risk area

Stage of Development. Suggestions for Commercialization

IRL6, TRL6

Upon request, the works for landslide prevention can be done for planning, civil engineering, and government bodies and city public administrations

Contact Information

Liudmyla P. Lischenko, Scientific Center for Aerospace Research of the Earth of the Institute of the Geological Sciences of the NAS of Ukraine; +38 044 482 03 72, e-mail: Lischenko.lp@gmail.com

HARDWARE AND METHOD COMPLEX FOR ECOLOGICAL ENGINEERING SURVEYS OF SOLID WASTE LANDFILLS

Example of methane concentration determination in surface SWL

Areas of Application

The complex is to be used for surface, subsurface and borehole measurements of methane and carbon dioxide concentration in the solid waste landfills (SWL); borehole measurements of engineering geophysical parameters and landfill cross section (clay insulating layers – wastes – natural ground)

Advantages

There are no counterparts to be used for combined ecological and engineeringgeophysical surveys of landfills in the world market; the hardware, result interpretation support, and software are customizable to any specific object; real-time in-situ measurement of a wide set of parameters without sampling

Specification

The complex consists of radioactive log hardware, CH_4 and CO_2 concentration meter, and methodological support for results interpretation. The following parameters are measured: concentration of CH_4 and CO_2 within the range of 0-100%; density, moisture, porosity, etc.

Stage of Development. Suggestions for Commercialization

IRL5, TRL6

Piece production of hardware upon request; seeking partners for commercial production and wide-scale introduction of the complex

IPR Protection

IPR1, IPR2, IPR3

Contact Information

Andrii Yu. Ketov, S. Subbotin Institute of Geophysics of the NAS of Ukraine; +38 044 424 33 30, +38 096 630 04 61, e-mail: vkulyk@igph.kiev.ua

Environment and Nature Protection

INCREASING THE NATURAL FISH PRODUCTIVITY OF WATER BODIES

Areas of Application

The method is to be used in aquaculture and fish farms

Specification

The method for increase natural fish productivity is based on the hydrological, hydrochemical, and hydrobiological studies through targeted formation of natural fodder base, selection of optimal fish species, their proportion, and measures to intensify fish growth (the use of modern stimulators, immunomodulators, micronutrients, etc.)

IPR Protection

IPR2

Advantages

The proposed method enables to increase natural fish productivity of water reservoirs up to 1.0-3.0 t/ha. In the case of artificial feed, the fish yield can grow up to 3.0-7.0 t/ha; in the recirculation system, it can reach 0.1-0.5 t/m³

Stage of Development. Suggestions for Commercialization

IRL9, TRL9

Upon request, recommendations on the use of the most cost-effective method for increasing fish productivity for each water reservoir are developed

Contact Information

Serhii V. Ovechko, Kherson Hydrobiological Station of the NAS of Ukraine; +38 055 227 03 35, e-mail: hgbs@nas.gov.ua

LOW-TEMPERATURE TECHNOLOGY FOR NEUTRALIZATION OF PERSISTENT ORGANIC POLLUTANTS

Areas of Application

The technology is to be used for neutralization of persistent organic pollutants (POPs) at low temperatures at enterprises of chemical and other industries

Specification

The technological process is carried out at 80 °C under the action of sodium methoxide on chloroorganic compound in the presence of 0.003 - 0.005 mol% catalyst in solvent. Only standard equipment is used in the technology

Advantages

The technology has no world analogues. It enables the neutralization of POPs (hexachlorobenzene, dioxins, polychlorobiphenyls, DDT, DDE) at low temperatures (under 80 °C). As compared with the high temperature technologies (1100–1200 °C) the new method makes it possible to save energy, to refuse from absorbers of volatile products, which simplifies the process, and to proceed to direct absorption and neutralization of hazardous substances (for example, dioxines)

Reaction mixture after hexachlorobenzene neutralization

Neutralization of hexachlorobenzene

Stage of Development. Suggestions for Commercialization

IRL3, TRL3 The laboratory technology is ready. The implementation of industrial technology needs preparatory works

IPR Protection

IPR1, IPR3

Contact Information: Nikolai I. Korotkikh,

L.M. Litvinenko Institute of Physical-Organic & Coal Chemistry of the NAS of Ukraine, Institute of Organic Chemistry of the NAS of Ukraine; +38 095 530 30 61, e-mail: nkorotkikh@ua.fm

MEANS OF INTENSIFICATION OF WATER BODIES SELF-REMEDIATION

A lake treated with material in summertime

A garden pond (treated with material for 5 years)

IPR Protection

IPR1

Areas of Application

The means are to be used for protecting the natural water reservoirs from pollution and algae overgrowth, increasing the fishery productivity, and for ensuring the ecological safety

Specification

The material for water treatment is a modified natural alumosilicate. It has a low plastic viscosity and forms a stable gel in water. It intensifies the photocatalytic processes resulting in producing active forms of oxygen, optimizing the oxidation of organic pollutants and the retention of heavy metal ions, and improving conditions for life and growth of aquatic organisms. To intensify the self-remediation of water bodies the material suspension $(0.1 \div 0.3\%)$ is pulverized above the water surface, alongshore, 2-3 times in summertime

Advantages

The materials provide a high degree of water purification from organic pollutants, which makes it possible to omit the herbicides and to enhance the productivity of fish (trout, bester, etc.) farming. The use of natural minerals results in a cheap cost of technology

Stage of Development. Suggestions for Commercialization

IRL8, TRL6

Materials and technology are ready for implementation in full-scale production and distribution, upon request

Contact Information

Kostiantyn O. Kazdobin, Vernadsky Institute of General and Inorganic Chemistry of the NAS Ukraine; +38 044 424 32 12, e-mail: kazdobin@ionc.kiev.ua

MEDWASTE MEDICAL WASTE TREATMENT COMPLEX

Areas of Application

The complex is designed for the treatment of potentially contaminated solid medical waste

Specification

Thermal pyrolysis: decomposition occurs at a high temperature without oxygen; waste processed: various medical wastes

Cycle duration, min	180
Heating method	Gas
Capacity at a humidity of 10%, kg/h	10 - 20
Power consumption (engine), kW	10
Weight, kg	500

Advantages

This technology enables preventing any contamination of air and surface water with hazardous substances and pathogenic microorganisms, produces low emissions; has an option of liquid fuel production

Stage of Development. Suggestions for Commercialization

IRL3, TRL5

Prototype; investment project for joint production; seeking for partners for joint investment project; prototype is provided and tested on the developer's site; search for sales markets in cooperation with investor

IPR Protection

IPR1

Contact Information

Yuri L. Zabulonov, Institute of Environmental Geochemistry of the NAS of Ukraine; +38 044 502 12 26, +38 044 502 12 23, e-mail: 1952zyl@gmail.com

Environment and Nature Protection

MELIORATION OF WATER RESERVOIRS

Areas of Application

The method is to be used in water management and fishery for improvement of ecological state of water ecosystems, private lease, and recreational use of water bodies

Advantages

The method enables quick and low-cost creation of optimal conditions for water use and inhabitation of fish and other aquatic organisms in water bodies. Using new high- performance fish hybrids enables to process up to 20 t/ha of bottom sediments (detritus and silt) annually, to inhibit the growth or to completely eliminate the higher aquatic vegetation. Also, the method provides the advanced technique for withdrawal of bottom sediments

Specification

The method is based on the biological reclamation with the use of herbivorous fish and the mechanical reclamation by mowing of higher aquatic vegetation and withdrawal of bottom sediments

Stage of Development. Suggestions for Commercialization

IRL9, TRL9

Upon request, the standards for sediment control are developed and recommendations on the use of the most cost-effective melioration methods including manual, mechanical, or biological reclamation are provided for each water reservoir individually

IPR Protection

IPR2

Contact Information

Sergey V. Ovechko, Kherson Hydrobiological Station of the NAS of Ukraine; +38 055 227 03 35, e-mail: hgbs@nas.gov.ua

METHOD FOR REMOTE ASSESSMENT OF ECOLOGICAL STATE AND WATER QUALITY OF INLAND RESERVOIRS

Decoding of the satellite images and mapping of the biotopes of the inland water (e.g. top of the Kyiv reservoir): a — the part of the Landsat 8 satellite image (2015-08-28); b — map of the biotopes; c — map of the landscape diversity (e.g. Simpson's index)

Areas of Application

The comprehensive assessment of inland reservoir ecological state is used for long-term monitoring and forecasting based on present-day and retrospective Earth remote sensing data and ground-based observations

Specification

The deliverables are: set of thematic maps of water reservoir state (biotope types, vegetation and water indexes, surface temperature, and landscape diversity parameters) with high and moderate spatial resolution; statistical tables with areas of selected components and ground-based observation data; and graphic results of simulation and forecast of reservoir condition

Advantages

The method surpasses the analogs in terms of more simple and fast assessment of aquatic ecosystem condition; it covers larger areas and enables retrospective study of inland reservoir condition. Also, it enables to detect shallow aquatic-landscape complexes that not only affect the reservoir hydrological regime, but also condition physical, chemical, and hydro-biological characteristics of aquatic environment

Stage of Development. Suggestions for Commercialization

IRL6, TRL5 The ecological state of particular reservoir or group of reservoirs is studied upon request

IPR Protection

IPR2

Contact Information

Olexander D. Fedorovsky, Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the NAS of Ukraine; +38 044 486 63 70, e-mail: adfedorovsky@ukr.net

METHODS AND EQUIPMENT FOR REDUCING NITROGEN OXIDES EMISSIONS BY BOILERS

Advantages

The lowest capital costs among the counterparts; implementable on existing 4-1000 MW boilers installed as long as 40-50 years ago. The rehabilitation extends service life of boilers by 15-20 years; the method is implementable in the course of repair works

Areas of Application

The methods and equipment are to be used by power engineering companies and communal enterprises for boilers of thermal power stations, central heating and power plants, and powerful boiler stations. Its application enables to reduce NO_x emissions from natural gas combustion to meet the European standards

Specification

The approach is based on the use of staged combustion burners, recirculation (including into fuel), staged combustion cycle or by simultaneous use of several methods. The staged combustion burners:

 α = 1.2 Control factor 5 NO_x ≤ 100 mg/nm³ CO ≤ 100 mg/nm³ at 3% O₂

Stage of Development. Suggestions for Commercialization

IRL7, TRL8

Upon request, equipment is manufactured, supplied, mounted, commissioned, and serviced during the warranty period; staff training is provided

IPR Protection

Contact Information

Boris K. Ilienko, The Gas Institute of NAS of the Ukraine; +38 044 456 03 56, +38 050 444 28 40, e-mail: bor.ilienko@gmail.com

METHODS FOR BIO-INDICATION OF ECOLOGICAL STATE OF WATER BODIES UNDER THE EFFECT OF LONG-TERM RADIOACTIVE CONTAMINATION

Dependence of frequency of injured red cell nuclei of peripheral blood of common rudd (*a*) and dependence of amount of aberrant cells in embryo tissues of pond snail (*b*) on radiation dose

Areas of Application

The method is to be used by nuclear fuel cycle enterprises and regulatory bodies in the field of nuclear industry and environment protection for monitoring the state of aquatic ecosystem under conditions of radioactive contamination to ensure the ecological safety in nuclear power engineering and the protection of environment from radiation

Specification

The method is based on the use of cytogenetic parameters (rate of aberrant cells) of embryonic tissues of freshwater pond snails and root meristems of higher aquatic plants, as well as of hematologic parameters (rate of deformations and pyknosis of peripheral blood red cell nuclei) of freshwater fish in order to determine the biologically significant levels of contamination of aquatic ecosystem components with main dose-forming radionuclides

Advantages

The developed methods and criteria adequately show the level of radiation impact and detect the early damages of the most sensitive components of biotic communities in aquatic ecosystems exposed to radiation

Stage of Development. Suggestions for Commercialization

IRL5, TRL3

The method for monitoring the quality of aquatic environment affected by nuclear fuel cycle enterprises is developed upon request

IPR Protection

IPR2

Contact Information

Oleksandr Ye. Usov, Institute of Hydrobiology of the NAS of Ukraine; +38 044 419 39 81, post_mail@hydrobio.kiev.ua

MODULAR SYSTEM FOR SEABED AND BOTTOM WATER STUDIES

Areas of Application

The system is to be used for bottom water sampling, sealing, degassing, bottom sediment sampling, and for temperature measurement at multiple levels of bottom sediments

Specification

Simultaneous water sampling and measurement of geological parameters at a depth of up to 2000 m; the complex is equipped with platforms to mount additional instruments for measuring chemical and physical parameters and with a bottom water degasser and a bottom sediment sampler.

Sampling at depths, m	≤2000
Temperature measurement, °C	0+30
Thermal inertia, c	≤10
Value of the smallest graduation, °C	≤±0.05

Advantages

The complex has an easily modifiable configuration in order to be adapted in accordance with the specific task; highly integrable hardware enables to increase the reliability of geological data and to reduce the vessel time

IPR Protection

IPR2

Stage of Development. Suggestions for Commercialization

IRL6, TRL6

Upon request, the device is manufactured and supplied; maintenance during the warranty period and staff training are provided

Contact Information

Ruslan B. Havryliuk, Institute of Geological Sciences of the NAS of Ukraine; +38 044 239 74 16, e-mail: gavrilyuk.ruslan@gmail.com

MONITORING OF THE STATE OF PEATLANDS FOR IDENTIFYING FIRE-DANGEROUS AREAS USING REMOTE METHODS

Latent underground fire seats in peatland areas after completion of fire-fighting operations

Areas of Application

The method is to be used for monitoring the fire-dangerous areas of peatlands to prevent fire outbreaks and for detecting hidden residual hot spots and fire seats after fire-fighting operations

Specification

The method is based on monitoring of thermal anomalies in peatlands using time series of thermal channels of medium spatial resolution multichannel satellite images (seasonal, annual) and IR imager field measurements. The deliverables are outlined peatland contours, calculated absolute temperature of peatland surface, identified fire-dangerous areas submitted as GIS

Advantages

As compared with the counterparts, this method enables ongoing monitoring of the thermal state of peaty soils, as well as rapid detection of fire outbreak areas and residual thermal anomalies after fire-fighting operations due to the use of a complex of ground-based IR imagers and airborne thermal surveys

IPR Protection

IPR2

Monitoring of the thermal field of flood plain surface (Irpin, Zdvizh, and Teteriv Rivers) based on the data of *Landsat*-5, 7, 8).

Changes in remote image of Chornohorodka peatland based on Landsat data for three months of 2015

Stage of Development. Suggestions for Commercialization

IRL5, TRL6

Upon request, a survey for determining the thermal state of individual peatlands and fire hazard level can be carried out for environment protection organizations, as well as for structural units and departments of the Ministry for Emergency Situations

Contact Information

Liudmyla P. Lishchenko, Scientific Center for Aerospace Research of the Earth of the Institute of Geological Sciences of the NAS of Ukraine; +380 44 482 03 72, e-mail: Lischenko.lp@gmail.com

MULTIBIOSENSOR FOR DETECTING TOXIC SUBSTANCES IN WATER SAMPLES

Measuring device with multibiosensor and flow-through system

Areas of Application

Specification

The device is to be used for measuring concentrations of toxic compounds as part of ecological monitoring of water reservoirs and soil

Advantages

No commercial analogues are known. In comparison with the similar laboratory prototypes the proposed multibiosensor is portable and suitable for measurements in field conditions with the possibility of distinguishing between different classes of toxins, has a low price, and does not require any sample pretreatment

Analyte	Heavy metal ions	Pesticides
Bio-selective elements based on:	Urease, glucose oxidase, acetylcholinesterase, butyrylcholinesterase	Acetylcholinesterase, butyrylcholinesterase
Butyrylcholinesterase	$10^{-6} - 5 \times 10^{-3}$	$3 \times 10^{-11} - 5 \times 10^{-4}$
Storage stability, months	4	4
Duration of analysis, min	20	20
Measurement error,%	≤15	≤15

Stage of Development. Suggestions for Commercialization

IRL5, TRL4 The device is manufactured upon request; seeking partners for the mass production

IPR Protection

Contact Information

Oleksandr O. Soldatkin, Institute of Molecular Biology and Genetics of the NAS of Ukraine; +38 044 200 03 41, e-mail: alex_sold@yahoo.com

MUNICIPAL WASTEWATER TREATMENT TECHNOLOGY FOR SMALL CITIES OF UKRAINE

Areas of Application

The technology is to be used for wastewater treatment

Specification

The developed technology for wastewater treatment plants includes: replacement of presettling tanks with anaerobic EGSB-reactors having an extended layer of granules and sand as carrier; use of aero-filter-type facilities for aerobic purification; creation of conditions for permanent removal of partially disrupted organic particles from EGSB-reactor to the next stage of treatment; discharge of excess sludge from the aerobic stage of treatment to EGSBreactor; use of purging channel for nitrification and baffled anaerobic reactor; use of highlyloaded sludge ponds; and stream aeration using submersible slurry pumps

Rehabilitated sludge bed

Anaerobic bioreactor

Aerobically stabilized sludge with a moisture content of 75%

Advantages

The anaerobic treatment of wastewater in psychrophilic conditions provides a significant (4–5 times) reduction in the share of dry matter in sludge a good filtration properties, with the area of sludge bed decreasing 10 times. It enables designing inexpensive water treatment facilities with power consumption less than 0.2-0.5 kWh per 1 m³ treated wastewater for greenfield construction

Stage of Development. Suggestions for Commercialization

IRL5, TRL7 Process flowchart for particular effluents is developed and staff training is provided upon request

IPR Protection IPR3

Contact Information

Volodymyr I. Kashkovsky, Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine; +38 044 559 20 71, +38 044 559 98 00, e-mail: kash54vik@gmail.com

OCTOKOPTER-TYPE SYSTEMS FOR REMOTE GAMMA-SPECTROMETRIC SCANNING OF THE EARTH'S SURFACE FROM AIRBORNE VEHICLES

Stage of Development. Suggestions for Commercialization

IRL3, TRL5

Prototype; investment project for joint production; seeking for partners for joint investment project; prototype is provided and tested on the developer's site; search for sales markets in cooperation with investor

Areas of Application

The onboard equipment is designed for remote detection and mapping of radioactive anomalies, as well as for development of orthophoto maps

Specification

1040×1040
<7.5
<10
20 - 25
10 - 300
63
63
950
5
0.1 - 5000
20
300
300
7.5

IPR Protection

IPR1

Advantages

Low cost, low risk for operators, the ability to capture images at low altitudes near the potentially hazardous objects

Contact Information

Yuri L. Zabulonov, Institute of Environmental Geochemistry of the NAS of Ukraine; +38 044 502 12 26, +38 044 502-12-23, e-mail: 1952zyl@gmail.com

PROCESSING OF ORGANIC WASTE INTO VALUABLE SUBSTANCES AND MATERIALS

Scheme of integrated processing technology of the organic waste

Areas of Application

The technology is to be used for recycling plant waste into commercial products

Specification

The integrated technology for processing plant waste includes the following stages: preparation of raw materials for further processing; targeted waste treatment to obtain a specific product; residual biomass thermal decomposition after removal of one or more products; grading of ash residue formed after heat treatment to obtain high-purity products; recovery of ash residue, if the grading stage is missing for a particular customer (fertilizers, construction materials and reagents for water purification)

Advantages

Unlike the world existing technologies for recycling plant waste, majority of which is oriented towards energy generation, this one enables obtaining several high-demand products and materials (technical and microcrystalline cellulose, alcohols, furfural, hydroxybenzaldehydes, high-purity $SiO_{2'}$, SiC, and Si_3N_4) at the same time

Stage of Development. Suggestions for Commercialization

IRL5, TRL5 Technology for processing particular biomass is developed, upon request

IPR Protection

IPR1

Contact Information

Volodymyr I. Kashkovsky, Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine; +38 044 559 20 71, +38 044 559 98 00, e-mail: kash54vik@gmail.com

RADIATION TECHNOLOGY FOR RECYCLING AND REUSE OF WASTE POLYMERIC MATERIALS

Areas of Application

The technology is proposed for disposal of household and industrial polymeric waste (secondary polymers) and for transformation of a reactive mass under the action of radiation for reuse in heat-resistant composite road pavement with increased strength

Specification

The technology is based on destroying the surface of chemically neutral polymeric granules under the action of radiation with further chemical reaction with other components of bituminous asphalt in order to get a dense polymer bituminous composite for heat-resistant road pavement. The composite is sustainable within a range of operating temperature from -50 °C to +120 °C and has a longer service life as compared with the conventional materials

IPR Protection

IPR3

Advantages

There are no analogs in Ukraine. The radiation technology enables the production of highquality road pavement materials and solves a pressing ecological problem as this technology provides recycling and reuse of environmentally hazardous polymeric waste

Stage of Development. Suggestions for Commercialization

IRL3, TRL3 Technology is provided

Contact Information

Tetiana V. Kovalinska; Institute for Nuclear Research of the NAS of Ukraine; +38 044 525 45 75, e-mail: tkovalinska@kinr.kiev.ua

SHOOT PULVERIZING DEVICE FOR FIRE EXTINGUISHMENT AND GENERAL PROTECTION

Device and container for substance pulverized in parts (left) and ready for use (right)

Areas of Application

The device is to be used for fire extinguishment and prevention of leakage of hazardous substances during natural and manmade catastrophes

Specification

The fire extinguisher tube is charged/recharged with one-liter plastic bottle for 3-5 s. The range capability is from 5 to 25 m depending on composition of pulverized mixture and pulverization mode set by special charge Weight of empty device, kg 5.5 Weight of charged device, kg 6.5

Advantages

The principal advantage is that no special treatment of water or other fire-fighting agents is required for fire extinguishment. The device has a large range capability and a small weight. The device configuration does not require any special skills for its use. The device can pulverize untreated water, sand, soil, snow, available fine-graded materials. No need to transport the containers for fire-extinguishing substances to service station or service center for charge/recharge

Stage of Development. Suggestions for Commercialization

IRL4, TRL4 Seeking partners for manufacture of cost-effective device

IPR Protection

Contact Information

Iryna H. Shitikova, Institute of Telecommunications and Global Information Space of the NAS of Ukraine; +38 095 503 75 61, e-mail: irinashitikova54@gmail.com

STRUCTURED CATALYSTS FOR C_1 - C_4 ALKANES COMBINED REFORMING INTO SYNGAS

Scheme of catalytic reformer with turbine

Areas of Application

The catalyst is to be used for obtaining syngas by combined O_2 - CO_2 - H_2O reforming of natural gas (methane and its homologues) for the further synthesis of ammonia, methanol, diethyl ether, and for Fischer-Tropsch synthesis

Specification

This cellular structured catalyst with a low content of active ingredients and a low gasdynamic resistance enables performing combined oxidative reforming of C_1 - C_4 alkanes involving O_2 , H_2O , and CO_2 ; obtaining syngas with H_2/CO ratio adjustable from 1 to 3; and implementing the autothermal mode

Advantages

As compared with similar catalysts, this one is cheaper, has a lower content of active components and a high productivity; it is resistible to carbonization and action of sulfur-containing compounds, has a low gas-dynamic resistance and operates within a wide temperature range (500 - 1000 °C); the catalyst does not contain precious metals

Syngas composition diagram

Stage of Development. Suggestions for Commercialization

IRL6, TRL5

Upon request, prototype is manufactured; license agreement for commercial production is made

IPR Protection

IPR3

Contact Information

Serhii O. Solovyov, L.V. Pisarzhevskii Institute of Physical Chemistry of the NAS of Ukraine; +38 044 525 66 70, e-mail: soloviev@inphvschem-nas. kiev.ua

TECHNOLOGY FOR AERATION STATION SLUDGE DEWATERING USING GEOTEXTILE MATERIALS

Areas of Application

The technology is to be used for reducing the water content in aeration station sludge

Specification

Dewatering of aeration station sludge is based on the pattern "sludge inside the container \rightarrow water through geotextile material out of the container" and "sludge outside of the container \rightarrow water through geotextile material into the container with ongoing water evacuation." The problem of regeneration of filter modules has been solved

Filtering module in BSA aerobic stabilizer

Dewatering of aerobically stabilized sludge by plant prototype

Sample	$\begin{array}{c} \text{COD,} \\ \text{mg O}_2/\text{dm}^3 \end{array}$	Dry residue, mg/dm³	Suspended particles, mg/dm ³	
Initial sludge Filtrate	10 400 240	11 950 860	10 980 46	

Stage of Development. Suggestions for Commercialization

IRL5, TRL7

Process chart is developed and training is provided upon request

IPR Protection IPR3

Contact Information

Volodymyr I. Kashkovsky, Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine; +38 044 559 20 71, +38 044 559 98 00, e-mail: kash54vik@gmail.com

Advantages

Dewatering of aeration station sludge in the mode "sludge outside the container" has been implemented for the first time. The proposed approaches can be used to reduce the load on ground sludge treatment facilities; to deeply clean the return supernatant water supplied from silt sites to the head of biological sewage treatment process; to reduce the level of silt detention ponds for increasing their operating capacity and for minimizing the load on guard dams; to dewater the sludge accumulated by placing it in geotextile containers; and to condition the sludge of any origin (except for aggressive one)

TECHNOLOGY FOR IMPROVING WATER QUALITY AT LARGE CASCADE RESERVOIRS BY HYDROPOWER STATION RELEASES

Areas of Application

The technology is to be used for improving the oxygen regime of water reservoirs, preventing asphyxiation of fish and other aquatic organisms, and ensuring water quality that meets the applicable water supply and consumption standards. The scope of application covers water economy, fishery, municipal water supply, environment protection, recreation, and power engineering

Specification

The technology (mathematical model) makes it possible to calculate the required regimes and HPS release volumes

Means of Regulating the Oxygen Regime of Cascade Reservoirs by HPS Releases

Type of reservoir	In summertime	In wintertime
River	Increasing volumes of upper HPS releases Increasing irregularity of upper HPS releases	Increasing length of water opening in the barrage area
Pond	Intensifying water exchange in shallow areas Intensifying water dynamics	Asynchronous operation of upper and lower HPS

Advantages

The proposed technology for regulating the ecological regime of HPS operation is feasible and does not require additional material costs

Stage of Development. Suggestions for Commercialization

IRL5, TRL5

The calculations of ecological regime and HPS release volume are provided upon request

IPR Protection IPR1, IPR2

Contact Information

Oleksandr Ye. Usov, Institute of Hydrobiology of the NAS of Ukraine; +38 044 419 39 81, e-mail: post_mail@hydrobio.kiev.ua

TECHNOLOGY FOR RAISING EFFICIENCY OF WET SCRUBBING OF PULVERIZED-COAL FIRED BOILER FLUE GASES FROM ASH

Flue gas purification

Venturi scrubber

Areas of Application

The technology can be used for upgrading the plants for wet cleaning of flue gases of pulverized-coal fired boilers from fly ash (Venturi scrubbers) at TPPs

Specification

The technology takes into account all significant physical phenomena taking place in the scrubbers and provides an opportunity to improve its operation

IPR Protection

IPR2

Advantages

The optimization of scrubber configuration and operating conditions using the proposed technology enables to reduce the amount of harmful substances emitted to atmosphere 2-3 times

Stage of Development. Suggestions for Commercialization

IRL5, TRL3

Upon request, scrubber configuration and operating conditions are optimized while developing new scrubbers or upgrading the existing ones. Recommendations are provided

Contact Information

Oleksandr A. Shraiber, Institute of General Power Engineering of the NAS of Ukraine; +38 044 220 16 88, e-mail: info@ienergy.kiev.ua

TECHNOLOGY FOR TREATMENT OF SOLID DOMESTIC WASTE LANDFILL LEACHATE

Leachate of SDW landfill

Catalytic oxidative treatment of leachate

Discharge of purified water into environment

Areas of Application

The proposed technology solves a very important environment and social problem, the pollution of aquifers with highly toxic leachate

Specification

This highly-efficient technology for comprehensive treatment of landfill leachate is designed to process 1.000 m³ leachate daily and involves the following stages: catalytic deep oxidative pretreatment of leachate; demineralization with the use of membranes (or in any other way); refinement in bio-pond until the applicable standards are met; and discharge of clean water into environment

Advantages

Unlike the existing methods, this technology enables organising the full recycling of leachate to obtain purified water that meets the applicable environment standards and to solve the problem of concentrated residue that is processed into materials for cap barrier layer, road construction materials or admixtures

Stage of Development. Suggestions for Commercialization

IRL5, TRL7

Customized process flowchart for particular landfill is developed and staff training is provided upon request

IPR Protection IPR3

Contact Information

Volodymyr I. Kashkovsky, Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine; +38 044 559 20 71, +38 044 559 98 00, e-mail: kash54vik@gmail.com

TESTS FOR DETECTION OF HEAVY METALS, NITRATES, AND CATIONIC SURFACTANTS IN LIQUID SAMPLES

Demonstration samples of test systems

Areas of Application

The tests are to be used for laboratory and field ecomonitoring as well as for industrial and domestic application in order to detect toxic substances in drinking, tap or sewage water, juices, fruits, and vegetables

Advantages

The proposed tests are competitive to famous brands, easy-to -use and have a long-term stability under storage conditions

Stage of Development. Suggestions for Commercialization

IRL6, TRL7 Upon request, tests are manufactured or developed

IPR Protection

IPR1, IPR3

Specification

Test	Range of detection	Test type
Fe-test	0.02-0.3 mg/l	Sorption on polyurethane foam
Cu-test	0.003-1 mg/1	Indicator paper
Mn-test	0.03-1 mg/l	Indicator film
Ni-test	0.03-1 mg/l	Sorption on polyurethane foam
Co-test	0.4-1 mg/l	Sorption on polyurethane foam
Chlorine	0.1-2 mg/l	Indicator paper
Cationic surfactant	0.1–1 mg/l	Sorption on polyurethane foam
Nitrates and nitrites	50—800 mg/kg	Indicator paper
Heavy metals	0.2-6.4 μmol/l	Indicator paper

Contact Information

Kostantyn M. Belikov, State Scientific Institution "Institute for Single Crystals" of the NAS of Ukraine; +38 057 341 03 57, +38 057 341 02 79, e-mail: belikov@isc.kharkov.com

TEXIVOD FILTERING GEOTEXTILE MATERIALS

Flexible apron of Pozniaky pond banks with the use of *Texivod*

Flexible apron works

Specification

The characteristics of geotextile materials meet the criteria TU V.2.7-17.2-00311444-001: 2006

Indicator	The value of indicators in grades of materials			
mulcator	Thin-T	Flat-P	Frame-K	Dimensional-O
Surface density, g/m ²	60-90	300-400	400-600	500-700
Thickness at a pressure of 1 kPa, mm	0.5 - 0.8	2.0-2.5	5.0-6.5	15-40
Breaking load, N/r. m	>1500	>8000	>8000	>6000
Elongation at rupture,%	20 - 35	90-110	18-20	20-50
Filtration coefficient at a pressure of 8 kPa, m/day	>80	>160	>300	>600
		1		1

Areas of Application

The materials are to be used as inverse filters of protective walls of waterworks and drainage structures

Stage of Development. Suggestions for Commercialization

IRL8, TRL8

Consultations on the use of *Texivod* material and its procurement, engineering support of related projects are provided

IPR Protection

IPR1

Advantages

The developed geotextile materials are manufactured at domestic factories using domestic raw materials; they are much cheaper than the foreign counterparts and can fully or partially replace the conventional inverse filters made of natural materials. The use of geotextile materials as inverse filters in walls of hydraulic structure ensures a reliable interface stability of soil base, reduces significantly the material consumption, which is important in terms of saving of natural resources and environment protection, increases the labor productivity, and reduces the construction costs with the quality and serviceability guaranteed

Contact Information

Nataliya S. Gorodetska, Institute of Hydromechanics of the NAS of Ukraine; +38 044 456 71 04, e-mail: nsgihm@gmail.com

TRIUMF SYSTEM FOR CONTROL AND MONITORING OF TRITIUM AND CARBON-14 RADIONUCLIDES

Areas of Application

The system is designed for measuring specific activity of tritium and carbon-14 based on their beta radiation in the environment objects, biological samples or in NPP process environment

Specification

Efficiency of tritium detection, %	>60
Efficiency of carbon-14 detection, %	>90
Tritium self-background, cpm	<20
Carbon-14 self-background, cpm	<30
Minimal detectable tritium activity, cpm	12
Minimal detectable carbon-14 activity, cpm Sensitivity, Bq/1	8 1
Irregularity of calibration characteristic per 1 hour of uninterrupted operation,%	≤2
Radiation energy range, eV	5-1500
Energy dependence, MeV, ±25%	0.06-1.5
Maximal statistical input load, cps	≤10 000

Stage of Development. Suggestions for Commercialization

IRL3, TRL5

Prototype; investment project for joint production; seeking for partners for joint investment project; prototype is provided and tested on the developer's site; search for sales markets in cooperation with investor

Advantages

Remote measurements and automatic control

IPR Protection

Contact Information

Yuri L. Zabulonov, Institute of Environmental Geochemistry of the NAS of Ukraine; +38 044 502 12 26, +38 044 502 12 23, e-mail: 1952zyl@gmail.com

VECTOR MULTIFUNCTIONAL PORTABLE STATION FOR RADIOLOGICAL CONTROL AND MONITORING

Areas of Application

The portable station is to be used for search, localization, and rapid identification of radioactive and nuclear materials

Specification

Energy range	From 50 keV
	to 3.0 MeV
Maximum input load,	
pulse/s	46 000
Measurement time, s	20-60
Volume activity, Bq/1	7 (Cs-137),
, <u>,</u>	measurement time
	up to 5 min
Surface contamination	-
density, mCi / m	0.01
Measured radionuclides	K-40, Cs-137,
	Cs-134, Ra-226,
	Th-232, Am-241
	and others
Maximum equivalent dose	
rate, Sv/year	≤10
Maximum equivalent dose,	
Sv/year	≤15
Weight, kg	≤5
Power supply	
from mains, V	220
from battery, hours	≥16

Advantages

Portability, rapid display of results and download of measurement data to the computer for radioactive contamination mapping

Stage of Development. Suggestions for Commercialization

IRL8, TRL9

Production sample. Sale of equipment. Upon request, the device is manufactured, set, and tested; staff training and maintenance during warranty period are provided; a technological framework for manufacturing model is created; the sample and serial production model are finalized; production process and solutions are optimized and customized to the key sales markets

IPR Protection

IPR1

Contact Information

Yuri L. Zabulonov, Institute of Environmental Geochemistry of the NAS of Ukraine; +38 044 502 12 26, +38 044 502 12 23, e-mail: 1952zyl@gmail.com

X-RAY AND GAMMA RADIATION DETECTORS

Areas of Application

The detectors are used for dosimetry and monitoring of X-ray and gamma radiation in nuclear energy, geology, ecology, medicine, and scholarly research

Specification

Detector for measurement of gamma radiation exposure dose rate within a wide range (from 0.1 μ Sv/h to 10 Sv/h) with a high effectiveness of X-ray and gamma radiation counting (~30,000 pulses/ μ Sv); Detector for measurement of high-energy gamma fields during emergency operation of nuclear power plant with a dose rate from 0.5 Sv/h to about 100 Sv/h, an analog sensitivity of ~2 × 10⁻³ C/Sv, and a high resistance to radiation (up to 10⁵ Sv); Detector for radionuclide control and detection is used for spectrometry of X-ray and gamma radiation within the energy range from 5 keV

to 2 MeV, with an energy resolution of 5% (662 keV); the device enables to qualitatively estimate the contribution of individual radionuclides

CdZnTe crystals and detectors

CdZnTe detectors

Stage of Development. Suggestions for Commercialization

IRL6, TRL6 The products are manufactured and sold upon request

Advantages

The sensors have no analogues in Ukraine; can operate at a room temperature

IPR Protection

IPR1

Contact Information

Serhii H. Pugach, Kharkov Institute of Physics and Technology National Research Center of the NAS of Ukraine; +38 057 335 68 43, +38 057 349 10 49, e-mail: pugach@kipt.kharkov.ua

TECHNOLOGY READINESS LEVEL (TRL) SCALE

Stage	TRL	Interpretation	Definition and Description
Invention	TRL1	Basic principles observed	Basic scholarly research is translated into potential new basic principles that can be used in new technologies
	TRL2	Technology con- cept formulated	Potential areas of application of basic (technological) principles, including the technological concept are identified. Basic manu- facturing principles are elaborated and potential sales markets are identified. A small research team is established to assess the project feasibility
Concept vali- dation	TRL3	First assessment of concept and technology effec- tiveness	Based on preliminary study, actual research is conducted to as- sess technical and market feasibility of the concept. This in- cludes active R&D works at the lab and first negotiations with potential customers. The research team expands. Market feasi- bility is assessed
	TRL4	Prototype valida- tion at lab	Basic technological components are integrated to assess early feasibility by testing in laboratory environment. Manufacture options are studied with basic manufacturing principles identi- fied. Key markets are researched to study demand. The organi- zation is ready to scale up, possible services are analyzed. Com- prehensive marketing analysis is made
Prototyping and incuba- tion	TRL5	Prototype testing in user environ- ment	The system is tested in user environment with broader techno- logical infrastructure involved. The actual use is tested and validated. Production-support works and pre-production tests are done in lab environment. Trial batches of prototypes enter the key markets. The organization starts activities to further distribute the prototypes and to enter the sales markets
Pilot produc- tion and dem- onstration	TRL6	Pre-production, including tests in user environment	The product and manufacturing technologies are completely ready for launch of a pilot line/pilot plant (low-scale manufac- ture). The product and manufacturing technologies are as- sessed and finalized. This may include additional R&D works. The early products and manufacturing technologies are tested in the key markets with simultaneous organization of manufac- ture (marketing research, logistics, production facilities, etc.)
	TRL7	Low-scale pilot production dem- onstrated	The product manufacture is fully operational at low rate. Ac- tual commercial products are manufactured. The final products are verified in the key markets. The organizational component is completed (comprehensive marketing strategy, all compo- nents of manufacturing activities). The products are formally launched in test markets
Initial market introduction	TRL8	Manufacture fully tested, validated, and certified	The manufacturing flow charts, product final version, produc- tion organization, and marketing tools are completed. The full- scale manufacture has been launched. The final product is sold in majority of domestic and international markets
Market expan- sion	TRL9	Manufacture and products fully op- erational and competitive	The full-scale manufacture is sustainable, with the product gaining new markets. Minor modifications and improvements create new versions. The technology and product output are optimized through implementing innovative concepts on man- ufacturing process. The product is fully customized to the key markets

INNOVATION READINESS LEVEL (IRL) SCALE

IRL	Innovation Readiness Level	Definition
IRL1	Inventor or team with a dream	The lowest level of readiness where the intention trans- forms into an idea of space system application or the space technology transforms into a business venture
IRL2	Paper studies produced	Once the basic ideas have been formulated, they are put down on paper in studies and analyses of business oppor- tunities
IRL3	Experimental evidence of business op- portunity	Active research and development are initiated, including analytical / laboratory studies to validate predictions re- garding the market, the competition, and the technology
IRL4	Capability to implement limited-scope programs with project teams	Basic technological and business components have been developed to establish that they will work together; an initial business plan is available
IRL5	Capability to support project engineer- ing development and design (no prod- uct, no revenues)	The basic technological and business components have been integrated with reasonably realistic supporting ele- ments. The business plan is credible, but still needs to be validated against the final product characteristics
IRL6	Capability to support development and design with a market-driven business team (product, no revenues)	The representative prototype system has been tested in a relevant environment. The business team is still incom- plete and the venture is not yet ready for commercializa- tion. A full business plan including the market, the opera- tional, the technological, and the financial aspects is avail- able
IRL7	Capability to support limited produc- tion; full business team in place (prod- uct and limited revenues)	The business can run on a limited scale. The full team is in place
IRL8	Capability to advance to full production and distribution (product and reve- nues)	The technology has been proven to work and the venture structure has proven to be able to support growing mar- ket shares
IRL9	Fully articulated business with appro- priate infrastructure and staffing (grow- ing market share)	The offering incorporating the new technology has been used in operational conditions and the business is run- ning with a growing market share

Intellectual Property Rights Protection¹ Levels

IPR codes	Protection Level
IPR1	Technical solutions are know-how ²
IPR2	Applications for copyright protection of IPR objects are expected to be or have been submitted
IPR3	The copyright protection of IPR objects as established by the applicable law of Ukraine has been obtained and is kept in force
IPR4	International industrial patent application(s) (according to the PCT system, etc.) has (have) been submitted. Application(s) for industrial patents has (have) been submitted in foreign country(ies) under national procedure
IPR5	The industrial patent(s) in foreign country(ies) has (have) been obtained and is/are kept in force

¹ The IPR protection measures are implemented by R&D institutions in accordance with the applicable legislation of Ukraine and the requirements of paragraphs 5, 8, and 9 of the Regulations for the use of intellectual property objects at the NAS of Ukraine as approved by Resolution of the Presidium of the NAS of Ukraine No.15 of January 16, 2008, on the Structural Units Responsible for Technology Transfer, Innovation Activities, and Intellectual Property (as revised)

² Know-how is technical, organizational, or commercial data obtained with the use of experience and upon trials of technology and its components, which are: closely held (not a part of general knowledge or available for public) on the date of license agreement; essential, i.e. important and useful for manufacture of products, manufacturing process, and/or provision of services; and elaborate i.e. detailed and complicated enough to verify their compliance with the criteria of being never-before-known and essential (Clause 1 of the Law of Ukraine on the State Regulation of Technology Transfer Activities) Reference Book

THE NATIONAL ACADEMY OF THE SCIENCE OF UKRAINE

Signed to print 18.00.2018 Format 60 × 84/8. Font: Book Antiqua. Conventional printed sheets 5.12. Published sheets 4.05. Circulation: 100 copies. Order No.5271