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A lucky chance of mine

In Sept. 1984  Oleg Borisenko, Kyrill Bugaev, Valentin Shelud’ko and Vladimir Shkira  
came to BITP for professional training 

We were the students of the Dniepropetrovsk National University (DNU) - 
A provincial university in Ukraine: 

Rektor: acad. Vladimir Ivanovich Mossakovsky a good friend of  
acad. Ostap Stepanovich Parasyuk (since Ph D studentship) 

G.M. Zinovjev met us and briefly presented the results of Laboratory 

I worked with Marina Korkina (prof) and came to P. I Fomin  
To establish a common work, 

But P. I Fomin went to a one week business trip… 

Hence G.M. Zinovjev suggested to me not to waste time and «to try to understand 
another  nonlinear and gauge theory known as lattice formulation of QCD»  

In a week, when P. I Fomin returned, I decided to work on lattice QCD    



Three  personal reasons to work with G.M. Zinovjev

1. Fantastic working atmosphere in Laboratory of HEDPhysics:  
                                    From making great physics to cleaning up the BITP territory!

2. A chance to discuss modern physics with foreign researchers 

3. I felt like at home, since G. M. Zinovjev,  Yu. M. Sinykov and O. P. Pavlenko  
Graduated from  my Alma Mater DNU   

Teatime in 1986:  
From left to right: 
G.M. Zinovjev,  Larry McLerran, 
S.I. Lipskih, Yu. M. Sinykov, 
myself, A.P. Kobushkin 



Gas of Bags: Exactly Solvable Statistical Model of  
Cluster Type

1965  Hagedorn suggested an exponentially growing mass spectrum for 
heavy hadrons. The model led to the idea of limiting temperature for 
hadrons.

1974  MIT Bag model is proposed. It treats hadrons as QG bags.                        
A.Chodos et. al., Phys. Rev. D 9, (1974) 3471.  

1975 Cabbibo and Parisi conjectured that limiting temperature evidences 
for the  new physics above T_H. The relevant d.o.f. are quarks and 
gluons. 

1981 Kapusta showed that MIT Bags have the Hagedorn mass spectrum.            
The Gas of Bags model is suggested. It unifies the three previous ideas.                  
Hence, heavy hadrons = QGP bags.      PRD 23 (1981) 2444. 

1981 Gas of Bags model was solved analytically by
                            M. Gorenstein, V. Petrov, G. Zinovjev, PLB 106 (1981)



Working Tree of Exactly Solvable Statistical Models of  
Cluster Type: SMM I

In 2000  I solved the Statistical Multifragmentation Model (SMM) of nuclear 
liquid-gas phase transition (PT) using approach of solving Gas of Bags 

No Coulomb interaction + thermodynamic limit
K. Bugaev, M. Gorenstein, I. Mishustin and W. Greiner, PRC 62 (2000)

Interaction: Hard core repulsion a la VDW

Excluded Volume (per particle) of hard core 
potential of radius R is 4 eigen volumes!

Eigen volume approximation means that !
bags move inside some cells! !
It is good for high densities!

Low density approximation! High densities!

Attraction: is accounted by many sorts of clusters (= hadrons and 
bags) being in chemical  equilibrium.

Repulsion:

Short range repulsion - 

otherwise no QGP exists!

Ideal hadron gas  has higher 

pressure and energy density 

than QGP!

Surface tension of QGP bags since they are similar to liquid droplets!

Use the fact that real gases consist of droplets of all possible sizes!

Model the color confinement!
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GBM employes eigen volume approximation (valid for high densities!)
=> it is unrealistic at low densities where the excluded volume must be used! 
=> no way to include the ordinary hadrons!
=> unrealistic phase diagram: no critical endpoint and no cross-over!14
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The problem, however, arises at low temperatures, while calculating the entropy

density for the model with Pint(T, n(nid)) (19). Indeed, for the choice

U(T, n(nid)) = g(T )f(n(nid))

In a general fashion one can show that

If U(T, n(nid)) ⇠ T , then the Third Law of thermodynamics is broken down at T = 0

If U(T, n(nid)) ⇠ T 2, then at low T such model does not go beyond the VdWaals app.
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where in deriving Eq. (21) we used an explicit form of Pint (19) and Eq. (5). As one

can see from (21) the mean-field model with linear T dependence of U or, equivalently,
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�
[1 + b nid]

�1 (21)

) (22)

where in deriving Eq. (21) we used an explicit form of Pint (19) and Eq. (5). As one

can see from (21) the mean-field model with linear T dependence of U or, equivalently,

of Pint, i.e.

For g(T ) = T )
dg(T )

d T
= 1 and Pint(T, n(nid)) ⇠ T

14

Available volume (V � P
k vknk) vk is eigen volume

instead of  

V �
P

k,j nkbkjnj
P

k nk

!

bkj is excluded volume (second virial coe↵)

The problem, however, arises at low temperatures, while calculating the entropy

density for the model with Pint(T, n(nid)) (19). Indeed, for the choice

U(T, n(nid)) = g(T )f(n(nid))

In a general fashion one can show that

If U(T, n(nid)) ⇠ T , then the Third Law of thermodynamics is broken down at T = 0

If U(T, n(nid)) ⇠ T 2, then at low T such model does not go beyond the VdWaals app.

s = @p(T,µ)
@T

nid = @pid(T,⌫)
@⌫

; sid = @pid(T,⌫)
@T

s(T, µ) =
sid +

h
nid

@U
@T

� @Pint

@T

i

1 + b nid

(19)

= (20)

=

sid +

dg(T )

d T

Z nid

0
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Due to  absence of surface tension of bags  => GBM is highly unrealistic!



Working Tree …: Scaling Relations of SMM (2001)Scaling Relations of the SMM

For simple liquids it was proven:

Fisher (1964) : α′ + 2β + γ′ ≥ 2 , (4.14)

Griffiths (1965) : α′ + β(1 + δ) ≥ 2 , (4.15)

Liberman (1966) : γ′ + β(1 − δ) ≥ 0 . (4.16)

• For α′ = 0 =⇒ new scaling relations:

α′ + 2β + γ′ =
ζ

σ
, (4.17)

α′ + β(1 + δ) =
ζ

σ
. =⇒ (4.18)

For ζ = 1;σ = 2
3 the SMM obeys stronger conditions!

• Conditions of the Fisher’s proof are not fulfilled for

the SMM. =⇒ This proof cannot be applied.

See M.E. Fisher, J. Math. Phys. 5 (1964) 944

• For α′
s Fisher’s and Griffiths’ scaling laws are fulfilled

– exactly for τF ≤ 1 + σ ,

– as inequalities for τF > 1 + σ .

Liberman’s scaling law is fulfilled exactly for any

choice of σ , ζ and τF .
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= 15/8 < 2
= 15/8 < 2

For SMM 
temperature 

dependence of 
surface tension
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For Fisher model  
T-dependence of 
surface tension

We showed to M.E. Fisher that conditions of his famous proof are not fulfilled for 
the SMM and similar models.  => This proof cannot be applied! 

P. T. Reuter and  
K. A. Bugaev,  

PLB 517 (2001) 

This was the first evidence that the standard definitions of crit. exponents are wrong!  



Working Tree …: Laplace-Fourier transform, SMM 
in finite volumes + Surface Entropy (2003-2006)

During my wort  at LBNL (2003-2006) I answered a few principal questions: 

1. What is T-dependence of surface tension coefficient of nuclear matter?    
It is Linear in T! 

L. G. Moretto, K. A. Bugaev, J. B. Elliott, R. Ghetti, J. Helgesson and L. Phair,  
Phys. Rev. Lett. (2005) 202701

2. Above Tc the surface tension coefficient can be negative. 
K. A. Bugaev, L. Phair, J. B. Elliott,  Phys. Rev. E 72 (2005)

3. In finite systems the analog of mixed phase is NOT a superposition of two pure  
phases, it is gas + a set of metastable states with complex free energy 

K. A. Bugaev,  Acta. Phys. Polon. B 36 (2005)

Using Laplace-Fourier transform I solved exactly: Hills and Dale model for partition of 
surface deformations and SMM in finite volume  

=> exact solutions showed me that



Working Tree …: Quark Gluon Bags with Surface 
Tension (2006-2010)

After my return to Kyiv in 2006, I included surface tension into Gas of Bags 
Allowing negative values of surface tension coefficient  

to exist above Tc 

K. A. Bugaev,  Phys. Rev. C 76 (2007)

After reading this work G.M. Zinovjev said a great thing to me:«Lyakseich, 
if you are right, then we should see this conclusion in lattice QCD!» 

This was a turning point and in 2010 we showed (theorem!) that 

When color tube breaks down (melting of hadrons and bags) =>  

SURFACE TENSION COEFFICIENT of colour string is NEGATIVE!     

K. A. Bugaev and G. M. Zinovjev, Nucl. Phys. A 848 (2010)



T

Baryonic chemical potential μ

σ > 0
σ < 0

Role of Surface Tension above Tcep

Our expectations Example from Wikipedia 

What is the physical reason that the 1-st Order PT curve      
Is terminated? Experiments show that at (3)CEP the surface tension 
coefficient σ is 0, but                                           what is σ at T>Tcep?

So far, the only reason which may 
prevent the condensation of hadrons 
into a large bag is negative Surface 
tension coefficient for T>Tcep.  
K.A.B.  PRC(2007)

σ > 0

σ = ?



Working Tree …: Role of Negative Surface Tension

At T=0  the surface tension coefficient of quark gluon bags in SU3 color QCD 
is 147 MeV/fm^2. 

4

FIG. 5. Total surface tension as a function of temperature
at zero chemical potential. We display results for di↵erent
Polyakov loop potentials in solid, dashed, dotted and dashed-
dot lines (see [14] for details).

finite size e↵ects from first principles are not available.
In this context, e↵ective models are very useful for de-
scribing the behavior of strongly interacting matter. In
a recent work [14], we studied finite size e↵ects within
the Polyakov loop Nambu-Jona-Lasinio model (PNJL)
for two light and one heavy quarks at vanishing baryon
chemical potential and finite temperatures. We included
di↵erent Polyakov loop potentials and checked that the
predictions of our e↵ective model in bulk are in agree-
ment with lattice QCD results. Finite size e↵ects were
included through the MRE formalism.

In Fig. 5 we show the total surface tension ↵TOT for
drops with di↵erent sizes, where ↵TOT =

P
i ↵i includes

the contribution of u, d and s quarks. We have checked
that ↵s is more than 10 times larger than ↵u and ↵d, in
qualitative accordance with results for cold quark matter
at very high densities [12, 13] that show that the total
surface tension ↵TOT is largely dominated by the contri-

bution of s quarks. The surface tension shows a signif-
icant variation with R at all temperatures, specially for
small drops with radii below 10 fm. There is also a con-
siderable dependence on the Polyakov loop potential. At
large temperatures, ↵TOT increases monotonically with
T . At lower T , ↵TOT has a local minimum associated
with the chiral transition of strange quarks. At temper-
atures below the minimum, ↵TOT tends to a constant
value which is of the same order of the values obtained
within the NJL model for cold quark matter (T = 0) at
finite chemical potentials (µ = 0� 450 MeV).

VI. CONCLUSIONS

(1) Surface tension in drops nucleated out of chemical
equilibrium at proto NS conditions is at least ten times
larger within the NJL model than within the MIT bag
model.
(2) Within the NJL model, surface tension in cold hy-

brid star conditions is ⇠ 150 MeV/fm2. For such large
values, mixed phases are mechanically unstable and the
hadron-quark interface in a hybrid star should be a sharp
discontinuity.
(3) Within the MIT bag model, the surface tension of

highly magnetized quark matter is in the range 2 � 20
MeV/fm2 for a wide range of baryon number densities.
The largest contribution comes from s quarks and the
results are quite insensitive to the size of the drop. For
eB & 5 ⇥ 10�3 GeV2, there is a significant increase in
the surface tension parallel to the magnetic field and a
significant decrease in the one perpendicular to B, with
respect to the unmagnetized case. For these values of ↵,
a mixed phase is expected within a hybrid magnetar.

(4) Surface tension within the PNJL model at vanish-
ing chemical potential is dominated by the contribution
of s quarks, it changes significantly with R and there is
some dependence on the choice of the Polyakov loop po-
tential. At large temperatures, ↵ increases monotonically
with T ; at very low T it saturates to a constant value.
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Surface tension of quark droplets in compact stars and in the early universe
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We review the role of the surface tension of quark matter droplets in astrophysical conditions,
focusing specifically on the thermodynamic conditions prevailing in cold neutron stars (NSs), in
hot lepton rich proto NSs, and in early universe conditions. We analyze quark matter in chemical
equilibrium under weak interactions, which is relevant for understanding the internal composition
of hybrid stars, as well as “just deconfined” quark matter out of chemical equilibrium, which is
the relevant thermodynamic state for describing the nucleation process of quark matter in NSs.
We explore the role of temperature, density, trapped neutrinos, droplet size and magnetic fields
within the multiple reflection expansion formalism (MRE). Quark matter is described within the
frame of di↵erent e↵ective models: the MIT bag model and the SU(3)f Nambu-Jona-Lasinio model
(NJL), including color superconductivity, neutrino trapping and magnetic fields. We also analyze
the deconfinement transition at vanishing chemical potential and finite temperature including the
Polyakov loop. We explore some astrophysical consequences of our results.

I. INTRODUCTION

The cores of massive NSs have densities that may favor
the nucleation of small droplets of quark matter, that un-
der appropriate conditions may grow converting a large
part of the NS into a deconfined state. The study of the
surface tension of deconfined quark matter has attracted
much attention recently [1] because a detailed knowledge
of it may contribute to a better comprehension of the
physics of NS interiors. In fact, surface tension plays a
crucial role in quark matter nucleation during the for-
mation of compact stellar objects, because it determines
the nucleation rate and the associated critical size of the
nucleated drops [2, 3]. It is also determinant in the for-
mation of mixed phases at the core of hybrid stars which
may arise only if the surface tension is smaller than a crit-
ical value of the order of tens of MeV/fm2 [4]. Also, sur-
face tension a↵ects decisively the properties of the most
external layers of a strange star which may fragment into
a charge-separated mixture, involving positively-charged
strangelets immersed in a negatively charged sea of elec-
trons, presumably forming a crystalline solid crust [5].
This would happen below a critical surface tension which
is typically of the order of a few MeV/fm2 [6].

However, in spite of its key role for NS physics, the sur-
face tension is still poorly known for quark matter. Early
calculations gave rather low values, below 5MeV/fm2 [7],
but larger values within 10� 50MeV/fm2 where used in
further works about quark matter droplets in NSs [8].
More recently, values around ⇡ 30MeV/fm2 have been
adopted for studying the e↵ect of quark matter nucle-
ation on the evolution of proto NSs [9]. However, values
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around ⇠ 300MeV/fm2 were suggested on the basis of
dimensional analysis of the minimal interface between a
color-flavor locked phase and nuclear matter [10].
In this work we present results we obtained for fi-

nite size e↵ects within the multiple reflection expansion
(MRE) framework (for details on the MRE formalism see
[11] and references therein). To describe quark matter
we employ the NJL and the MIT bag models considering
di↵erent scenarios that we describe below.

II. SURFACE TENSION AND
DECONFINEMENT AT PROTONEUTRON

STARS

In proto NSs, matter can reach temperatures of the
order of 50 MeV and the neutrino chemical potential
is very high because neutrinos are trapped due to their
short mean free path. In such conditions, one may won-
der whether deconfined quark matter drops can nucle-
ate within an initially hadronic NS. To study this, we
have employed a two phase description of the first order
hadron-quark phase transition. For the hadronic phase
we used the nonlinear Walecka model, which includes the
whole baryon octet, electrons, and trapped electron neu-
trinos in equilibrium under weak interactions. For the
just deconfined quark matter we used an SU(3)f NJL
model including color superconducting quark-quark in-
teractions and the MIT bag model [2, 3]. In the quark
phase, finite size e↵ects are included via the MRE for-
malism. We assume that quark droplets can be formed if
Gibbs conditions are fulfilled (i.e. if the Gibbs free energy
of both phases is the same at the same pressure and tem-
perature). Since deconfinement is driven by strong inter-
actions, it is reasonable to assume that the just formed
quark phase has initially the same flavor composition as
the hadronic-stable phase from which it has been pro-
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K. A. Bugaev and G. M. Zinovjev, Nucl. Phys. A 848 (2010)

In 2012 we developed and solved the model of QGBags with Surface Tension 
with critical point and solved problem which arose in 1981   

K. A. Bugaev, V. K. Petrov, G. M. Zinovjev, Phys. Part. Nucl. Lett. 9  (2012)

In 2012 we found the critical exponent of QGBags with Surface Tension with 
 Critical point and found 1st non-Fisher universality class

A.I. Ivanytskyi, K.A. Bugaev, A.S. Sorin, G. M. Zinovjev, Phys. Rev. E 86 
(2012)



Working Tree …: Role of Finite Width in Colour 
Confinement (2009-2011)

In 2009 we developed a paradox free statistical mechanics of QG bags with  
Finite width and found its parameters from lattice QCD data

K. A. Bugaev, V. K. Petrov, G. M. Zinovjev, Europhys. Lett. 85, (2009) 

Standard picture of color confinement: break of colour sting =>  
leads to a pair of colorless fragments (hadrons or bags)

In vacuum at T=0 the width of bag of mean mass <M> > 2.5 GeV is 

 Γ = 450  MeV [ <M>/2 GeV]
0.5

In medium at T= 160 MeV the width of bag of mean mass <M> > 2.5 GeV is 

 Γ = 1400  MeV [ <M>/2 GeV]
0.5

=>  Even  the QG bag is created one cannot detect it directly, but  
via decays it looks like a very wide resonance

K. A. Bugaev, V. K. Petrov, G. M. Zinovjev, Phys. Rev. C 79, (2009) 

=> at first glance the chance to ever detect QG bag was hopeless…



Working Tree …: Apparent Width of Wide 
Resonances (2011-2015)

In 2015 we showed that in dense medium the QG bags  acquire  
Apparent width  

  
Γ = T ln(2)  

and, hence, there is a hope to detect them via certain decays!   

K. A. Bugaev, A. I. Ivanytskyi,  D. R. Oliinychenko, E. G. Nikonov, V. V. Sagun, 
G. M. Zinovjev, Ukr. J. Phys.  60, (2015) 



Working Tree …: Morphological Thermodynamics  
(2021-20…)

Hope we will  complete the  Morphological Thermodynamics of  

hadrons and QG bags  and will discover something else! 

Many Happy Returns, dear  Teacher!
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ε=(Tc-T)/Tc is relative deviation of temperature  from Tc 
k is number of nucleons in a fragment

P. T. Reuter and K. A. Bugaev, PLB 517 (2001) 



 Confinement by Color String before sQGP

Consider confining string between static q & anti q of length L and radius R<<L

Its free energy measured from Polyakov loop correlator is 

3

Fstr = ⇥strL

Fcyl(T, L, R) ⇥ � pv(T )�R2L⌥ ⌃⇧ �
thermal

+ ⇥surf(T )2�RL⌥ ⌃⇧ �
surface

+ T ⇤ ln
V

V0⌥ ⌃⇧ �
small

.

Deconfinement means that  
string tension vanishes

Can be rigorously  found by Lattice QCD

Introduction Free energies Checks and Balances Free energy at infinite separation Entropy and Internal Energy Renormalized Polyakov Loop Quarkonia (quenched) Charmonium Summary
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• No medium effects up to 0.3fm
• Strong effects at r > 0.4fm
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outer pressure Ptot

Confinement means infinite free energy 
for infinite L 

Confinement = absence of free color charges 

 At T=0 the string tension = 12 tons!



 Confinement by Color String within sQGP
 From F => Internal energy U, entropy S
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TABLE V: Simulation parameters and screening masses for the large lattice 322 ×48×6. Lattice scales are estimated by Refs.
[34, 35].

β a−1[GeV] T[MeV] T/Tc mm/T me/T
7.0 7.64 1274 4.97 1.128(78) 2.556(156)
7.5 13.8 2303 8.99 1.014(54) 2.178(144)
8.0 24.7 4127 16.12 0.984(60) 2.256(120)
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FIG. 13: The temperature dependence including higher temperature points on the large lattice 322 × 48 × 6.

IV. CONCLUSIONS

We have measured the gluon propagators and obtained the electric and magnetic masses by lattice QCD simulations
in the quenched approximation for SU(3) between T = Tc and 6Tc. Features of the QGP in this temperature region
will be extensively studied theoretically and experimentally in the near future.

Our screening mass studies are the first reliable measurement in SU(3) lattice calculation. We mainly investigate
the temperature dependence for the electric and magnetic masses which do not vanish on 202 × 32 × 6 lattices. In
all temperature regions we find that the electric mass me is always larger than the magnetic one mm, except near
critical temperature point. As the temperature goes down toward Tc, me/T drops down quickly, while mm/T is still
going up. Consequently, using data above T/Tc ∼ 1.5 we conclude that the scalings me ∼ gT and mm ∼ g2T work
well. Furthermore, a HTL resummation calculation has recently been developed and compared with nonperturbative
lattice simulations. We have also compared our numerical results with LOP and HTL resummation and find a good
improvement of the HTL electric mass. These comparison studies of SU(3) screening masses qualitatively seem to
agree with the case of SU(2) [14].

The electric masses obtained here are not consistent with those obtained by heavy qq̄ potential calculations from
an SU(3) Polyakov loop correlator at finite temperature in Refs. [17, 18]. In Ref. [18], the authors did extensive
analyses with three different temporal extents and two different gauge actions, obtaining a very reliable potential as
a function of the temperature. They observe that the potential above Tc cannot be described properly by the leading
order perturbation calculation up to a few Tc: They exclude the two-gluon exchange as the dominant screening
mechanism, and suggest that some kind of one-gluon exchange may describe the potential effectively as a result of
the complex interaction, and that at about (1.5 − 3)Tc a mixture of one- and two-gluon exchange may explain the
behavior. Therefore, due to the ambiguity of the fitting assumptions, it is not clear whether we can compare our
screening masses directly with those obtained by the potential calculation.

In order to investigate the nature of the QGP, especially the excitation modes in the plasma, Datta and Gupta
recently calculated glueball masses at finite temperature and made an interesting observation. They measured the
screening masses of A++

1 (scalar) and A−−
2 (glueball), which allow two- and three-gluon exchange, and their ratio ∼ 1.7

is near 3/2. The A−−
2 mass is twice that obtained by Kaczmarek et al, and shows similar temperature dependence.

There are now several nonperturbative methods to study QGP: our direct measurement of the gluon propagators,
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Figure 16: (upper left) Temperature dependence of electric and magnetic screening masses according
to Nakamura et al [76]. The dotted line is fitted by the assumption, mg ⇥ g2T . For the electric mass,
the dashed and solid lines represent LOP and HTL re-summation results, respectively. (upper right)
Temperature dependence of the e�ective string tensions of the free and potential energies �F , �V . (down)
The energy and entropy (as TS�(T )) of two static quarks separated by large distance, in 2-flavor QCD
according to [77].

Studies of the static Q̄Q potential have been extended to finite T . In particular, deconfinement
temperature Tc is defined as a disappearance of the linear behavior as a signal of deconfinement at
T > Tc in the corresponding free energy F (T, r). Bielefeld-BNL group has published lattice results for
static Q̄Q free energy, as well as internal energy and entropy

V (T, r) = F � TdF/dT = F + TS (36)

at T both below and above Tc, see [79, 80].
Remarkable features of these results include:

1. The linear (in r) part of the potentials. Their e�ective tensions are shown in Fig.16(top right).
While that for free energy vanishes at Tc (by definition), that for potential energy extends till at least
about 1.3Tc, with a peak values about 5 times (!) the �vac.. Similar behavior is seen in entropy,while
canceling in free energy. The widths of these peaks provide a natural definition of “near-Tc” region as
T/Tc = 0.8� 1.2
2.Although potentials at large distances r ⌅⇧ are finite V (T,⇧), near Tc their values reach very large
magnitudes, see Fig.16(down). The corresponding large entropy S(Tc,⇧) ⇤ 20 means that really huge
⇥ exp(20) number of states is involved ;
The origin of this large energy and entropy associated with static Q̄Q pairs near Tc, remains mysterious:
many attempts (e.g. [81]) failed to explain it. Below we will return to this phenomenon in connection
with “magnetic plasma” scenario.

Before looking for explanations, however, let us focus on physical di�erence between F and U, based
on papers by Zahed, Liao and myself [82, 83], in which they are related to what happens for slow and

29

 U
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TABLE V: Simulation parameters and screening masses for the large lattice 322 ×48×6. Lattice scales are estimated by Refs.
[34, 35].
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IV. CONCLUSIONS

We have measured the gluon propagators and obtained the electric and magnetic masses by lattice QCD simulations
in the quenched approximation for SU(3) between T = Tc and 6Tc. Features of the QGP in this temperature region
will be extensively studied theoretically and experimentally in the near future.

Our screening mass studies are the first reliable measurement in SU(3) lattice calculation. We mainly investigate
the temperature dependence for the electric and magnetic masses which do not vanish on 202 × 32 × 6 lattices. In
all temperature regions we find that the electric mass me is always larger than the magnetic one mm, except near
critical temperature point. As the temperature goes down toward Tc, me/T drops down quickly, while mm/T is still
going up. Consequently, using data above T/Tc ∼ 1.5 we conclude that the scalings me ∼ gT and mm ∼ g2T work
well. Furthermore, a HTL resummation calculation has recently been developed and compared with nonperturbative
lattice simulations. We have also compared our numerical results with LOP and HTL resummation and find a good
improvement of the HTL electric mass. These comparison studies of SU(3) screening masses qualitatively seem to
agree with the case of SU(2) [14].

The electric masses obtained here are not consistent with those obtained by heavy qq̄ potential calculations from
an SU(3) Polyakov loop correlator at finite temperature in Refs. [17, 18]. In Ref. [18], the authors did extensive
analyses with three different temporal extents and two different gauge actions, obtaining a very reliable potential as
a function of the temperature. They observe that the potential above Tc cannot be described properly by the leading
order perturbation calculation up to a few Tc: They exclude the two-gluon exchange as the dominant screening
mechanism, and suggest that some kind of one-gluon exchange may describe the potential effectively as a result of
the complex interaction, and that at about (1.5 − 3)Tc a mixture of one- and two-gluon exchange may explain the
behavior. Therefore, due to the ambiguity of the fitting assumptions, it is not clear whether we can compare our
screening masses directly with those obtained by the potential calculation.

In order to investigate the nature of the QGP, especially the excitation modes in the plasma, Datta and Gupta
recently calculated glueball masses at finite temperature and made an interesting observation. They measured the
screening masses of A++

1 (scalar) and A−−
2 (glueball), which allow two- and three-gluon exchange, and their ratio ∼ 1.7

is near 3/2. The A−−
2 mass is twice that obtained by Kaczmarek et al, and shows similar temperature dependence.

There are now several nonperturbative methods to study QGP: our direct measurement of the gluon propagators,
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Studies of the static Q̄Q potential have been extended to finite T . In particular, deconfinement
temperature Tc is defined as a disappearance of the linear behavior as a signal of deconfinement at
T > Tc in the corresponding free energy F (T, r). Bielefeld-BNL group has published lattice results for
static Q̄Q free energy, as well as internal energy and entropy

V (T, r) = F � TdF/dT = F + TS (36)

at T both below and above Tc, see [79, 80].
Remarkable features of these results include:

1. The linear (in r) part of the potentials. Their e�ective tensions are shown in Fig.16(top right).
While that for free energy vanishes at Tc (by definition), that for potential energy extends till at least
about 1.3Tc, with a peak values about 5 times (!) the �vac.. Similar behavior is seen in entropy,while
canceling in free energy. The widths of these peaks provide a natural definition of “near-Tc” region as
T/Tc = 0.8� 1.2
2.Although potentials at large distances r ⌅⇧ are finite V (T,⇧), near Tc their values reach very large
magnitudes, see Fig.16(down). The corresponding large entropy S(Tc,⇧) ⇤ 20 means that really huge
⇥ exp(20) number of states is involved ;
The origin of this large energy and entropy associated with static Q̄Q pairs near Tc, remains mysterious:
many attempts (e.g. [81]) failed to explain it. Below we will return to this phenomenon in connection
with “magnetic plasma” scenario.

Before looking for explanations, however, let us focus on physical di�erence between F and U, based
on papers by Zahed, Liao and myself [82, 83], in which they are related to what happens for slow and

29

String tension for internal energy (V) is finite

 String tension σstr for free energy (F) —> 0
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IV. CONCLUSIONS

We have measured the gluon propagators and obtained the electric and magnetic masses by lattice QCD simulations
in the quenched approximation for SU(3) between T = Tc and 6Tc. Features of the QGP in this temperature region
will be extensively studied theoretically and experimentally in the near future.

Our screening mass studies are the first reliable measurement in SU(3) lattice calculation. We mainly investigate
the temperature dependence for the electric and magnetic masses which do not vanish on 202 × 32 × 6 lattices. In
all temperature regions we find that the electric mass me is always larger than the magnetic one mm, except near
critical temperature point. As the temperature goes down toward Tc, me/T drops down quickly, while mm/T is still
going up. Consequently, using data above T/Tc ∼ 1.5 we conclude that the scalings me ∼ gT and mm ∼ g2T work
well. Furthermore, a HTL resummation calculation has recently been developed and compared with nonperturbative
lattice simulations. We have also compared our numerical results with LOP and HTL resummation and find a good
improvement of the HTL electric mass. These comparison studies of SU(3) screening masses qualitatively seem to
agree with the case of SU(2) [14].

The electric masses obtained here are not consistent with those obtained by heavy qq̄ potential calculations from
an SU(3) Polyakov loop correlator at finite temperature in Refs. [17, 18]. In Ref. [18], the authors did extensive
analyses with three different temporal extents and two different gauge actions, obtaining a very reliable potential as
a function of the temperature. They observe that the potential above Tc cannot be described properly by the leading
order perturbation calculation up to a few Tc: They exclude the two-gluon exchange as the dominant screening
mechanism, and suggest that some kind of one-gluon exchange may describe the potential effectively as a result of
the complex interaction, and that at about (1.5 − 3)Tc a mixture of one- and two-gluon exchange may explain the
behavior. Therefore, due to the ambiguity of the fitting assumptions, it is not clear whether we can compare our
screening masses directly with those obtained by the potential calculation.

In order to investigate the nature of the QGP, especially the excitation modes in the plasma, Datta and Gupta
recently calculated glueball masses at finite temperature and made an interesting observation. They measured the
screening masses of A++

1 (scalar) and A−−
2 (glueball), which allow two- and three-gluon exchange, and their ratio ∼ 1.7

is near 3/2. The A−−
2 mass is twice that obtained by Kaczmarek et al, and shows similar temperature dependence.

There are now several nonperturbative methods to study QGP: our direct measurement of the gluon propagators,
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Studies of the static Q̄Q potential have been extended to finite T . In particular, deconfinement
temperature Tc is defined as a disappearance of the linear behavior as a signal of deconfinement at
T > Tc in the corresponding free energy F (T, r). Bielefeld-BNL group has published lattice results for
static Q̄Q free energy, as well as internal energy and entropy

V (T, r) = F � TdF/dT = F + TS (36)

at T both below and above Tc, see [79, 80].
Remarkable features of these results include:

1. The linear (in r) part of the potentials. Their e�ective tensions are shown in Fig.16(top right).
While that for free energy vanishes at Tc (by definition), that for potential energy extends till at least
about 1.3Tc, with a peak values about 5 times (!) the �vac.. Similar behavior is seen in entropy,while
canceling in free energy. The widths of these peaks provide a natural definition of “near-Tc” region as
T/Tc = 0.8� 1.2
2.Although potentials at large distances r ⌅⇧ are finite V (T,⇧), near Tc their values reach very large
magnitudes, see Fig.16(down). The corresponding large entropy S(Tc,⇧) ⇤ 20 means that really huge
⇥ exp(20) number of states is involved ;
The origin of this large energy and entropy associated with static Q̄Q pairs near Tc, remains mysterious:
many attempts (e.g. [81]) failed to explain it. Below we will return to this phenomenon in connection
with “magnetic plasma” scenario.

Before looking for explanations, however, let us focus on physical di�erence between F and U, based
on papers by Zahed, Liao and myself [82, 83], in which they are related to what happens for slow and
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 Very strong interaction above Tc! => No color charge separation!

HUGE entropy S=20!? 
Huge amount of dof!?



 String Tension vs Surface Tension

 Identify now colour string as cylindrical bag of length L and radius R<<L

Neglect  effects of color sources and get cylinder FREE ENERGY as:
3

Fstr = ⇥strL

Fcyl(T, L, R) ⇥ � pv(T )�R2L⌥ ⌃⇧ �
thermal

+ ⇥surf(T )2�RL⌥ ⌃⇧ �
surface

+ T ⇤ ln
V

V0⌥ ⌃⇧ �
small

.

3

Fstr = ⇥strL

Fcyl(T, L, R) ⇥ � pv(T )�R2L⌥ ⌃⇧ �
thermal

+ ⇥surf(T )2�RL⌥ ⌃⇧ �
surface

+ T ⇤ ln
V

V0⌥ ⌃⇧ �
small

.

⇥str(T ) = ⇥surf(T ) 2�R � pv(T )�R2 +
T ⇤

L
ln

⇤
�R2L

V0

⌅

We got a new possibility to determine QGP bag surface tension directly from 
LQCD!
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Fstr = ⇥strL

Fcyl(T, L, R) ⇥ � pv(T )�R2L⌥ ⌃⇧ �
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+ ⇥surf(T )2�RL⌥ ⌃⇧ �
surface

+ T ⇤ ln
V

V0⌥ ⌃⇧ �
small

.

⇥str(T ) = ⇥surf(T ) 2�R � pv(T )�R2 +
T ⇤

L
ln

⇤
�R2L

V0

⌅

From bag model pressure pv(T = 0) = �(0.25)4 GeV4, R = 0.5 fm and
⇥str(T = 0) = (0.42)2 GeV2 ⌅

⇥surf(T = 0) = (0.2229 GeV)3 +0.5 pv R ⇤ (0.183 GeV)3 ⇤ 157.4 MeV fm�2.

K.A.B., G.M. Zinovjev,  Nucl. Phys. A848 (2010)

Equating the cylinder FREE ENERGY to string free energy

3

Fstr = ⇥strL

Fcyl(T, L, R) ⇥ � pv(T )�R2L⌥ ⌃⇧ �
thermal

+ ⇥surf(T )2�RL⌥ ⌃⇧ �
surface

+ T ⇤ ln
V

V0⌥ ⌃⇧ �
small

.



 Surface Tension at Cross-over

3

Fstr = ⌅strL

Fcyl(T, L, R) ⇥ � pv(T )⇤R2L↵ ⌦ �
bulk

+ ⌅surf(T )2⇤RL↵ ⌦ �
surface

+ T ⇧ ln
V

V0↵ ⌦ �
small

.

⌅str(T ) = ⌅surf(T ) 2⇤R � pv(T )⇤R2 +
T ⇧

L
ln

⇤
⇤R2L

V0

⌅

From bag model pressure pv(T = 0) = �(0.25)4 GeV4, R = 0.5 fm and
⌅str(T = 0) = (0.42)2 GeV2 ⇧

⌅surf(T = 0) = (0.2229 GeV)3 +0.5 pv R ⇤ (0.183 GeV)3 ⇤ 157.4 MeV fm�2.

For vanishing ⌅str one has ⌅LQCD
str ⇤ ln(L/L0)

R2 C

This is due to increase of surface fluctuations ⇧ in general

⌅str(T ) Rk ⌅ ⌃k > 0 for k > 0

Parametrize ⌅str = ⌅0
str t⇥, where t ⇥ Ttr(µ)�T

Ttr(µ) ⌅ +0

and find total pressure and total entropy density
for µ = 0 (baryonic chemical potential)

ptot = pv(T )�⌅surf(T )
R

⇥ ⌅surf(T )
R

� ⌅str

⇤R2 ⌅
⇤
⌅str

⌃k

⌅ 1
k

⇧
⌅surf �

⌃k

⇤

⇤
⌅str

⌃k

⌅k+1
k

⌃

stot =

�
� ptot

� T

⇥

µ

⌅
1

k ⌅str

⇤
⌅str

⌃k

⌅ 1
k � ⌅str

� T
⌅surf

↵ ⌦ �
dominant since ⌅str⌅ 0

+
⌥

⌅str

⌃k

� 1
k � ⌅surf

� T
� k+2

⇤ k

⌥
⌅str

⌃k

� 2
k � ⌅str

� T

For finite ⌅surf and � ⌅str

� T
< 0 ⇧ ⌅surf < 0 since stot > 0

1



 Mysterious Maximum of Colour Tube Entropy
Low T no surface fluctuations 

=> surface entropy is small

At high T<Tc => very strong  
surface fluctuations! => 
String entropy is large! 
Huge number of dof!
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Entropy and Internal Energy
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• big jump in critical region

• in potential models would mean two or three-fold increase in

effective mass

• food for thought.

4

This state is part of all string configurations, contained in LQCD data

⌅ Assume: we can apply our results to LQCD data with L ⇥ R

For ⇥str ⇤ 0 ⌅ R ⇤ 2 ⇥surf

pv
and lattice entropy is

Slat

L
= � 1

L
⌅Flat

⌅T
⇤ � stot k ⇥strR

⇥surf
= � stot k ⇤k

⇥surfRk�1 ⇤ t��1

⌅ again ⇥surf < 0

⌅ Slat diverges for � < 1 and R ⇤ ⇧

⌅ Slat has a sharp inclease for � < 1 and R ⇤ Rlat < ⇧

Can we verify this result with LQCD data?

Similarly, consider the fall down of Slat due to strong stot decrease

This explains ‘a mysterious maximum in Slat’ (E. Shuryak)

18

Above Tc there is NO free surface => 
 surface entropy =0 !

This is a solution of Mysterious Maximum problem


