Data analysis and forecast of the epidemiological situation in Ukraine to support decision-making

Working group on mathematical modeling of the SARS-CoV-2 coronavirus epidemic in Ukraine

Igor Brovchenko

Classical SEIR model

Population is divided into several compartments. Fluxes between compartments are described using the system of ordinary differential equations.

- *S* The number of **s**usceptible individuals
- *E* Exposed, infected but not yet infectious themselves during incubation period
- *I* The number of infectious individuals
- *R* The number of Recovered (Removed) individuals

$$egin{aligned} &rac{dS}{dt}=-rac{eta IS}{N},\ &rac{dI}{dt}=rac{eta IS}{N}-\gamma I-\mu I,\ &rac{dR}{dt}=\gamma I,\ &rac{dD}{dt}=\mu I, \end{aligned}$$

Developed by NASU mathematical model for Covid-

19 analysis and forecasts in Ukraine

Eı	Iı
E2	I2
QE	

QI

- infected asymptomatic

- infected symptomatic

-transboundary fluxes

Red color denotes infectious compartments

Features:

- Consist of 12 compartments
- Can take into account asymptomatic cases
- Inflow of infected foreign travelers
- Several scenarios of decease (mild, severe and fatal)
- Hospitalizations
- Automatic parameter calibration
- Flexible structure, can be updated according to the new information

Estimation of parameters from statistics

Data available from the Public Health Center of Ukraine is used to determine main model parameters

Calibration of unknown parameters

Calibration algorithm is used to determine the mathematical model parameters

Effective reproduction number for Ukraine and each region

Calibration of Case Fatality Ratio

Delays of data publication

New cases

New deaths

Average publication delays

Comparison of published and real dates for

new cases

Comparison of published and real dates for new deaths

Excess mortality

Excess mortality

Regional mortality

All-causes deaths and COVID-19 fatalities in Ukrainian regions

Example of projection of new cases

Problems/issues

- Fraction of susceptible population, real number of infected population (solution – serological surveys, testing)
- Date of publication vs. date of registration
- Testing
- Hospitalization data

International cooperation

- UNICEF, World Bank
- Epi Modelling and Analytics Technical Working Group (TWG) (WHO, KSE,UNICEF, NASU, UNDP, CDC, World Bank, PHCU)
- Sussex University

Further plans

- Continue producing regular reports for the decision support
- Include data of serological surves and data about herd immunity when available
- Develop age structured model
- Develop demographic model

Age structured mathematical nature > scientific reports > articles > article

model

Article Open Access Published: 12 November 2020

Mathematical modelling of the dynamics and containment of COVID-19 in Ukraine

Yuliya N. Kyrychko 🗠, Konstantin B. Blyuss & Igor Brovchenko

- Needs more sophisticated calibration algorithm
- May be used for simulating the quarantine measures
- May be used for the contact matrix validations
- May require additional
 - sociological information and/or surveys