

Prof. Nataliia Kussul Space Research Institute NASU-SSAU, Ukraine

Context of cooperation - GEO related projects

GEOGLAM

GEO <u>**GL**</u>obal <u>**A**gricultural <u>**M**</u>onitoring Initiative</u>

<u>Joint Experiment on Crop Assessment and Monitoring</u>

SIGMA

SIGMA — FP7 Project "<u>S</u>timulating <u>I</u>nnovation for <u>G</u>lobal <u>M</u>onitoring of <u>A</u>griculture"

ERA-PLANET

Horizon 2020 project on European Research Area in Earth Observations

JECAM-Ukraine site description

- **Location**: Ukraine (Kyiv oblast with area 28,000 km²; intensive observation sub-site of 25x15 km²). Centroid: lat: 50.35° N, long: 30.71° E
- Intensive agriculture area. Main crop types: winter wheat, winter rapeseed, spring barley, maize, soybeans, sunflower, sugar beet, and vegetables
- Field size: from 30 to 250 ha
- Crop calendar: Winter: September July;
 Summer: April October
- Cloud coverage can be very frequent during the growing season
- Topography: mostly flat, slope: 0% to 2%
- Soils: different kinds of chernozems
- Soil drainage is ranging from poor to welldrained. Irrigation infrastructure is limited
- Climate and weather: humid continental

Main directions of cooperation with JRC

Crop classification & area assessment

Biophysical parameters estimation

Crop yield forecasting

Contract no. 255189 "Crop area estimation with satellite images in Ukraine"

Coordinator from JRC : J.F. Gallego

- Landsat-5/TM
- LISS-III

RapidEye

Efficiency of satellite data use for crop estimation:

Price is 1.5 lover

Project "Evaluation of the coherence between Copernicus products and crop biophysical parameters"

• Evaluation of the **relationship** between the **crop biophysical** parameters measured on field with or vegetation indices extracted from **high resolution sensors**; and an assessment of the uncertainties of low-resolution (1 km) **biophysical products from Copernicus program**.

DHP imagery samples

Results of processing with CAN-EYE

VALERI sampling strategies for random (left) or row (centre) and regularly planted vegetation (right).

Project "Evaluation of the coherence between Copernicus products and crop biophysical parameters"

NASU-JRC Information day, 14.09.2016, Kiev, Ukraine

Project "Parcel based classification for Agricultural Mapping and Monitoring (Ukraine)"

- Joint experiment on parcel-based classification for agricultural mapping and monitoring in Ukraine.
- **Study area** Kiev Oblast (JECAM test site in Ukraine).
- Methods of Classification and data:
 - Proba-V and Sentinel-1/SAR, Landsat-8;
 - neural network based classifier (SRI);
 - multiple classifiers available in Google Earth Engine (GEE);
- Estimate advantages of the GEE cloud platform to efficiently process and classify large volume of remote sensing data, and as such enabling classification over large territories.

Data processing workflow

Multi mission crop classification (2015)

KYIV OBLAST (2015)				
Satellite	OA, % pixel based			
L-8 + S-1	92.7			
SENTINEL-1	91.4			
LANDSAT-8	85.4			

Filtration results (Kyiv oblast)

A majority voting scheme

Method that divides parcel into the fields

MARS approach in Ukraine (Ukr Hydrometcenter)

Crop yield forecasting: towards <u>M</u>onitoring <u>Agricultural</u> <u>ResourceS</u> (MARS)

Providing products since 2011 for Ukraine:

- ESA GLOBCOVER cropland, 300 m, 2008
- MODIS MOD13Q1 NDVI;
- Statistical data from State Statistics
 Service of Ukraine;
- Up to 2 months before harvest

		2010	2011	2012	2013
NDVI	RMSE	8.2	6.2	6.8	5.8
	average	6.8	-3.7	-3.4	2
FAPAR	RMSE	8.9	5.2	5.6	4.1
	average	7.6	-2.1	-0.5	8.0

Challenges and further steps

- Dedicated Program in NASU to support national priorities and cooperation with JRC;
- Implementation of MARS program for crop yield forecasting in Ukraine;
- GEOGLAM-Ukraine program in line with GEO strategic plan to provide applied scientific results of satellite crop monitoring to Ministry of Agriculture

Thank you!

nataliia.kussul@gmail.com

